scholarly journals A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space

2017 ◽  
Vol 217 (2) ◽  
pp. 507-515 ◽  
Author(s):  
Sevan Mattie ◽  
Jan Riemer ◽  
Jeremy G. Wideman ◽  
Heidi M. McBride

Mitochondrial fusion occurs in many eukaryotes, including animals, plants, and fungi. It is essential for cellular homeostasis, and yet the underlying mechanisms remain elusive. Comparative analyses and phylogenetic reconstructions revealed that fungal Fzo1 and animal Mitofusin proteins are highly diverged from one another and lack strong sequence similarity. Bioinformatic analysis showed that fungal Fzo1 proteins exhibit two predicted transmembrane domains, whereas metazoan Mitofusins contain only a single transmembrane domain. This prediction contradicts the current models, suggesting that both animal and fungal proteins share one topology. This newly predicted topology of Mfn1 and Mfn2 was demonstrated biochemically, confirming that the C-terminal, redox-sensitive cysteine residues reside within the intermembrane space (IMS). Functional experiments established that redox-mediated disulfide modifications within the IMS domain are key modulators of reversible Mfn oligomerization that drives fusion. Together, these results lead to a revised understanding of Mfns as single-spanning outer membrane proteins with an Nout–Cin orientation, providing functional insight into the IMS contribution to redox-regulated fusion events.

1997 ◽  
Vol 110 (9) ◽  
pp. 1073-1081 ◽  
Author(s):  
W.E. Achanzar ◽  
S. Ward

During maturation of spermatids to motile spermatozoa in Caenorhabditis elegans, large vesicles called membranous organelles (MOs) fuse with the spermatid plasma membrane. Mutations in the gene fer-1 cause abnormal spermatozoa in which the MOs do not fuse, although they abut the plasma membrane normally. Here we describe the fer-1 gene, which we found to be approximately 8.6 kb in length and to encode a 6.2 kb transcript whose expression is limited to the primary spermatocytes, the cells in which the MOs form. fer-1 is predicted to encode a 235 kDa protein which is highly charged except for a putative transmembrane domain near the C terminus. We identified the mutations associated with five fer-1 alleles, all of which are missense mutations causing single amino acid changes. FER-1 is not similar to any characterized proteins in sequence databases, nor does it contain known functional motifs other than the predicted transmembrane domain. The C-terminal transmembrane domain makes FER-1 resemble some viral fusion proteins, suggesting it may play a direct role in MO-plasma membrane fusion. FER-1 does show significant sequence similarity to several predicted human proteins of unknown function. Two of the identified fer-1 mutations are located in regions of similarity between FER-1 and two of these predicted proteins. This strengthens the biological significance of these similarities and suggests these regions of similarity represent functionally important domains of FER-1 and the human proteins.


2021 ◽  
Author(s):  
Takuya Shiota ◽  
Edward Germany ◽  
Yue Ding ◽  
Kenichiro Imai ◽  
Rebecca Bamert ◽  
...  

Abstract Gram-negative bacteria, mitochondria and chloroplasts contain β-barrel outer membrane proteins (OMPs). Most OMPs have a “β-signal” imprinted in the final β-strand. In Gram-negative bacteria, the β-barrel assembly machinery (BAM) complex recognize the β-signal for the folding and membrane insertion of the OMP. Here, we identified the “-5 signal”, a novel signal existing in the fifth β-strand from the C-terminus (-5 strand) responsible for the insertion step of the assembly process. We further identified the receptor for the -5 signal as BamD. BamD can recognize both β-signal and -5 signal, marshalling the OMP for assembly. There is sequence similarity in of both signals observed also in mitochondrial OMPs. Therefore, we propose the “-5 rule” repeating a similar sequence in the -5 and last strand, as a conserved feature of the OMP assembly process in bacteria and eukaryotes.


2007 ◽  
Vol 179 (7) ◽  
pp. 1355-1363 ◽  
Author(s):  
Hidenori Otera ◽  
Yohsuke Taira ◽  
Chika Horie ◽  
Yurina Suzuki ◽  
Hiroyuki Suzuki ◽  
...  

The central channel Tom40 of the preprotein translocase of outer membrane (TOM) complex is thought to be responsible for the import of virtually all preproteins synthesized outside the mitochondria. In this study, we analyze the topogenesis of the peripheral benzodiazepine receptor (PBR), which integrates into the mitochondrial outer membrane (MOM) through five hydrophobic transmembrane segments (TMSs) and functions in cholesterol import into the inner membrane. Analyses of in vitro and in vivo import into TOM component–depleted mitochondria reveal that PBR import (1) depends on the import receptor Tom70 but requires neither the Tom20 and Tom22 import receptors nor the import channel Tom40, (2) shares the post-Tom70 pathway with the C-tail–anchored proteins, and (3) requires factors of the mitochondrial intermembrane space. Furthermore, membrane integration of mitofusins and mitochondrial ubiquitin ligase, the MOM proteins with two and four TMSs, respectively, proceeds through the same initial pathway. These findings reveal a previously unidentified pathway of the membrane integration of MOM proteins with multiple TMSs.


Author(s):  
Kathryn A. Diederichs ◽  
Xiaodan Ni ◽  
Sarah E. Rollauer ◽  
Istvan Botos ◽  
Xiaofeng Tan ◽  
...  

AbstractIn mitochondria, β-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold β-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane β-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 β-barrel opens a lateral gate to accommodate its substrates. The SAM complex structure suggests how it interacts with other mitochondrial outer membrane proteins to create supercomplexes.


Author(s):  
Shadi Khodamoradi ◽  
Richard L. Hahnke ◽  
Yvonne Mast ◽  
Peter Schumann ◽  
Peter Kämpfer ◽  
...  

AbstractStrain M2T was isolated from the beach of Cuxhaven, Wadden Sea, Germany, in course of a program to attain new producers of bioactive natural products. Strain M2T produces litoralimycin and sulfomycin-type thiopeptides. Bioinformatic analysis revealed a potential biosynthetic gene cluster encoding for the M2T thiopeptides. The strain is Gram-stain-positive, rod shaped, non-motile, spore forming, showing a yellow colony color and forms extensively branched substrate mycelium and aerial hyphae. Inferred from the 16S rRNA gene phylogeny strain M2T affiliates with the genus Streptomonospora. It shows 96.6% 16S rRNA gene sequence similarity to the type species Streptomonospora salina DSM 44593 T and forms a distinct branch with Streptomonospora sediminis DSM 45723 T with 97.0% 16S rRNA gene sequence similarity. Genome-based phylogenetic analysis revealed that M2T is closely related to Streptomonospora alba YIM 90003 T with a digital DNA-DNA hybridisation (dDDH) value of 26.6%. The predominant menaquinones of M2T are MK-10(H6), MK-10(H8), and MK-11(H6) (> 10%). Major cellular fatty acids are iso-C16:0, anteiso C17:0 and C18:0 10-methyl. The polar lipid profile consisted of diphosphatidylglycerol phosphatidyl glycerol, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, three glycolipids, two unknown phospholipids, and two unknown lipids. The genome size of type strain M2T is 5,878,427 bp with 72.1 mol % G + C content. Based on the results obtained from phylogenetic and chemotaxonomic studies, strain M2T (= DSM 106425 T = NCCB 100650 T) is considered to represent a novel species within the genus Streptomonospora for which the name Streptomonospora litoralis sp. nov. is proposed.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 482
Author(s):  
Jae-Kwon Jo ◽  
Seung-Ho Seo ◽  
Seong-Eun Park ◽  
Hyun-Woo Kim ◽  
Eun-Ju Kim ◽  
...  

Obesity can be caused by microbes producing metabolites; it is thus important to determine the correlation between gut microbes and metabolites. This study aimed to identify gut microbiota-metabolomic signatures that change with a high-fat diet and understand the underlying mechanisms. To investigate the profiles of the gut microbiota and metabolites that changed after a 60% fat diet for 8 weeks, 16S rRNA gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomic analyses were performed. Mice belonging to the HFD group showed a significant decrease in the relative abundance of Bacteroidetes but an increase in the relative abundance of Firmicutes compared to the control group. The relative abundance of Firmicutes, such as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, Harryflintia, Lactobacillus, Oscillospira, and Erysipelatoclostridium, was significantly higher in the HFD group than in the control group. The increased relative abundance of Firmicutes in the HFD group was positively correlated with fecal ribose, hypoxanthine, fructose, glycolic acid, ornithine, serum inositol, tyrosine, and glycine. Metabolic pathways affected by a high fat diet on serum were involved in aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine, tyrosine, and trypto-phan biosynthesis. This study provides insight into the dysbiosis of gut microbiota and metabolites altered by HFD and may help to understand the mechanisms underlying obesity mediated by gut microbiota.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anushree Bachhar ◽  
Jiri Jablonsky

AbstractPhosphoketolase (PKET) pathway is predominant in cyanobacteria (around 98%) but current opinion is that it is virtually inactive under autotrophic ambient CO2 condition (AC-auto). This creates an evolutionary paradox due to the existence of PKET pathway in obligatory photoautotrophs. We aim to answer the paradox with the aid of bioinformatic analysis along with metabolic, transcriptomic, fluxomic and mutant data integrated into a multi-level kinetic model. We discussed the problems linked to neglected isozyme, pket2 (sll0529) and inconsistencies towards the explanation of residual flux via PKET pathway in the case of silenced pket1 (slr0453) in Synechocystis sp. PCC 6803. Our in silico analysis showed: (1) 17% flux reduction via RuBisCO for Δpket1 under AC-auto, (2) 11.2–14.3% growth decrease for Δpket2 in turbulent AC-auto, and (3) flux via PKET pathway reaching up to 252% of the flux via phosphoglycerate mutase under AC-auto. All results imply that PKET pathway plays a crucial role under AC-auto by mitigating the decarboxylation occurring in OPP pathway and conversion of pyruvate to acetyl CoA linked to EMP glycolysis under the carbon scarce environment. Finally, our model predicted that PKETs have low affinity to S7P as a substrate.


Sign in / Sign up

Export Citation Format

Share Document