Tubulin isotypes optimize distinct spindle positioning mechanisms during yeast mitosis

2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Emmanuel T. Nsamba ◽  
Abesh Bera ◽  
Michael Costanzo ◽  
Charles Boone ◽  
Mohan L. Gupta

Microtubules are dynamic cytoskeleton filaments that are essential for a wide range of cellular processes. They are polymerized from tubulin, a heterodimer of α- and β-subunits. Most eukaryotic organisms express multiple isotypes of α- and β-tubulin, yet their functional relevance in any organism remains largely obscure. The two α-tubulin isotypes in budding yeast, Tub1 and Tub3, are proposed to be functionally interchangeable, yet their individual functions have not been rigorously interrogated. Here, we develop otherwise isogenic yeast strains expressing single tubulin isotypes at levels comparable to total tubulin in WT cells. Using genome-wide screening, we uncover unique interactions between the isotypes and the two major mitotic spindle positioning mechanisms. We further exploit these cells to demonstrate that Tub1 and Tub3 optimize spindle positioning by differentially recruiting key components of the Dyn1- and Kar9-dependent mechanisms, respectively. Our results provide novel mechanistic insights into how tubulin isotypes allow highly conserved microtubules to function in diverse cellular processes.

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaolong Shao ◽  
Weitong Zhang ◽  
Mubarak Ishaq Umar ◽  
Hei Yuen Wong ◽  
Zijing Seng ◽  
...  

ABSTRACT Guanine (G)-rich sequences in RNA can fold into diverse RNA G-quadruplex (rG4) structures to mediate various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4s in prokaryotes are still elusive. We used QUMA-1, an rG4-specific fluorescent probe, to detect rG4 structures in a wide range of bacterial species both in vitro and in live cells and found rG4 to be an abundant RNA secondary structure across those species. Subsequently, to identify bacterial rG4 sites in the transcriptome, the model Escherichia coli strain and a major human pathogen, Pseudomonas aeruginosa, were subjected to recently developed high-throughput rG4 structure sequencing (rG4-seq). In total, 168 and 161 in vitro rG4 sites were found in E. coli and P. aeruginosa, respectively. Genes carrying these rG4 sites were found to be involved in virulence, gene regulation, cell envelope synthesis, and metabolism. More importantly, biophysical assays revealed the formation of a group of rG4 sites in mRNAs (such as hemL and bswR), and they were functionally validated in cells by genetic (point mutation and lux reporter assays) and phenotypic experiments, providing substantial evidence for the formation and function of rG4s in bacteria. Overall, our study uncovers important regulatory functions of rG4s in bacterial pathogenicity and metabolic pathways and strongly suggests that rG4s exist and can be detected in a wide range of bacterial species. IMPORTANCE G-quadruplex in RNA (rG4) mediates various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4 are still elusive in prokaryotes. Here, we found that rG4 is an abundant RNA secondary structure across a wide range of bacterial species. Subsequently, the transcriptome-wide rG4 structure sequencing (rG4-seq) revealed that the model E. coli strain and a major human pathogen, P. aeruginosa, have 168 and 161 in vitro rG4 sites, respectively, involved in virulence, gene regulation, cell envelope, and metabolism. We further verified the regulatory functions of two rG4 sites in bacteria (hemL and bswR). Overall, this finding strongly suggests that rG4s play key regulatory roles in a wide range of bacterial species.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2526
Author(s):  
Baptiste Bidon ◽  
Samar Kabbara ◽  
Vincent Courdavault ◽  
Gaëlle Glévarec ◽  
Audrey Oudin ◽  
...  

Cytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth. A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication. Their signal transduction pathways were first historically deciphered in plants and are related to the two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations have now been called into question following the identification over recent years of genes encoding CK and ET receptor homologs in many other lineages within the tree of life. These advances shed new light on the dissemination and evolution of these hormones as both intra- and inter-specific communication molecules in prokaryotic and eukaryotic organisms.


1994 ◽  
Vol 107 (7) ◽  
pp. 1875-1884 ◽  
Author(s):  
H.V. Goodson ◽  
S.J. Kang ◽  
S.A. Endow

The rapidly expanding kinesin family of microtubule motor proteins includes proteins that are involved in diverse microtubule-based functions in the cell. Phylogenetic analysis of the motor regions of the kinesin proteins reveals at least five clearly defined groups that are likely to identify kinesins with different roles in basic cellular processes. Two of the groups are consistent with overall sequence similarity, while two groups contain proteins that are related in overall structure or function but show no significant sequence similarity outside the motor domain. One of these groups consists only of kinesin proteins with predicted C-terminal motor domains; another includes only kinesins required for mitotic spindle bipolarity. Drosophila Nod, presently an ungrouped protein, may represent a class of kinesins that, like the myosin I proteins, function as monomers. The analysis indicates that many types of kinesin proteins exist in eukaryotic organisms. At least two of the five groups identified in this analysis are expected to be present in most, or all, eukaryotes.


2010 ◽  
Vol 30 (5) ◽  
pp. 319-330 ◽  
Author(s):  
Max A. Tischfield ◽  
Elizabeth C. Engle

The many functions of the microtubule cytoskeleton are essential for shaping the development and maintaining the operation of the nervous system. With the recent discovery of congenital neurological disorders that result from mutations in genes that encode different α- and β-tubulin isotypes (TUBA1A, TUBB2B, TUBA8 and TUBB3), scientists have a novel paradigm to assess how select perturbations in microtubule function affect a range of cellular processes in humans. Moreover, important phenotypic distinctions found among the syndromes suggest that different tubulin isotypes can be utilized for distinct cellular functions during nervous system development. In the present review, we discuss: (i) the spectrum of congenital nervous system diseases that result from mutations in tubulin and MAPs (microtubule-associated proteins); (ii) the known or putative roles of these proteins during nervous system development; (iii) how the findings collectively support the ‘multi-tubulin’ hypothesis, which postulates that different tubulin isotypes may be required for specialized microtubule functions.


2016 ◽  
Vol 44 (2) ◽  
pp. 431-440 ◽  
Author(s):  
Katarzyna Zientara-Rytter ◽  
Suresh Subramani

Peroxisomes are essential organelles required for proper cell function in all eukaryotic organisms. They participate in a wide range of cellular processes including the metabolism of lipids and generation, as well as detoxification, of hydrogen peroxide (H2O2). Therefore, peroxisome homoeostasis, manifested by the precise and efficient control of peroxisome number and functionality, must be tightly regulated in response to environmental changes. Due to the existence of many physiological disorders and diseases associated with peroxisome homoeostasis imbalance, the dynamics of peroxisomes have been widely examined. The increasing volume of reports demonstrating significant involvement of the autophagy machinery in peroxisome removal leads us to summarize current knowledge of peroxisome degradation in mammalian cells. In this review we present current models of peroxisome degradation. We particularly focus on pexophagy–the selective clearance of peroxisomes through autophagy. We also critically discuss concepts of peroxisome recognition for pexophagy, including signalling and selectivity factors. Finally, we present examples of the pathological effects of pexophagy dysfunction and suggest promising future directions.


2020 ◽  
Author(s):  
Daniel Martel ◽  
Stewart Pine ◽  
Katharina Bartsch ◽  
Joachim Clos ◽  
Gerald F. Späth ◽  
...  

AbstractCasein Kinase 1 (CK1) family members are serine/threonine protein kinases ubiquitously expressed in eukaryotic organisms. They are involved in a wide range of important cellular processes, such as membrane trafficking, or vesicular transport in organisms from yeast to humans. Due to its broad spectrum of action, CK1 activity and expression is tightly regulated by a number of mechanisms, including subcellular sequestration. Defects in CK1 regulation, localisation or the introduction of mutations in the CK1 coding sequence are often associated with important diseases such as cancer. Increasing evidence suggest that the manipulation of host cell CK1 signalling pathways by intracellular pathogens, either by exploiting the host CK1 or by exporting the CK1 of the pathogen into the host cell may play an important role in infectious diseases. Leishmania CK1.2 is essential for parasite survival and released into the host cell, playing an important role in host pathogen interactions. Although Leishmania CK1.2 has dual role in the parasite and in the host cell, nothing is known about its parasitic localisation and organelle-specific functions. In this study, we show that CK1.2 is a ubiquitous kinase, which is present in the cytoplasm, associated to the cytoskeleton and localised to various organelles, indicating potential roles in kinetoplast and nuclear segregation, as well as ribosomal processing and motility. Furthermore, using truncated mutants, we show for the first time that the two low complexity regions (LCR) present in the C-terminus of CK1.2 are essential for the subcellular localisation of CK1.2 but not for its kinase activity, whereas the deletion of the N-terminus leads to a dramatic decrease in CK1.2 abundance. In conclusion, our data on the localisation and regulation of Leishmania CK1.2 contribute to increase the knowledge on this essential kinase and get insights into its role in the parasite.


2013 ◽  
Vol 368 (1617) ◽  
pp. 20110399 ◽  
Author(s):  
Nardin Nano ◽  
Walid A. Houry

Rvb1 and Rvb2 are highly conserved and essential eukaryotic AAA+ proteins linked to a wide range of cellular processes. AAA+ proteins are ATPases associated with diverse cellular activities and are characterized by the presence of one or more AAA+ domains. These domains have the canonical Walker A and Walker B nucleotide binding and hydrolysis motifs. Rvb1 and Rvb2 have been found to be part of critical cellular complexes: the histone acetyltransferase Tip60 complex, chromatin remodelling complexes Ino80 and SWR-C, and the telomerase complex. In addition, Rvb1 and Rvb2 are components of the R2TP complex that was identified by our group and was determined to be involved in the maturation of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes. Furthermore, the Rvbs have been associated with mitotic spindle assembly, as well as phosphatidylinositol 3-kinase-related protein kinase (PIKK) signalling. This review sheds light on the potential role of the Rvbs as chaperones in the assembly and remodelling of these critical complexes.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


Genetics ◽  
2020 ◽  
Vol 215 (4) ◽  
pp. 1153-1169 ◽  
Author(s):  
Riddhiman K. Garge ◽  
Jon M. Laurent ◽  
Aashiq H. Kachroo ◽  
Edward M. Marcotte

Many gene families have been expanded by gene duplications along the human lineage, relative to ancestral opisthokonts, but the extent to which the duplicated genes function similarly is understudied. Here, we focused on structural cytoskeletal genes involved in critical cellular processes, including chromosome segregation, macromolecular transport, and cell shape maintenance. To determine functional redundancy and divergence of duplicated human genes, we systematically humanized the yeast actin, myosin, tubulin, and septin genes, testing ∼81% of human cytoskeletal genes across seven gene families for their ability to complement a growth defect induced by inactivation or deletion of the corresponding yeast ortholog. In five of seven families—all but α-tubulin and light myosin, we found at least one human gene capable of complementing loss of the yeast gene. Despite rescuing growth defects, we observed differential abilities of human genes to rescue cell morphology, meiosis, and mating defects. By comparing phenotypes of humanized strains with deletion phenotypes of their interaction partners, we identify instances of human genes in the actin and septin families capable of carrying out essential functions, but failing to fully complement the cytoskeletal roles of their yeast orthologs, thus leading to abnormal cell morphologies. Overall, we show that duplicated human cytoskeletal genes appear to have diverged such that only a few human genes within each family are capable of replacing the essential roles of their yeast orthologs. The resulting yeast strains with humanized cytoskeletal components now provide surrogate platforms to characterize human genes in simplified eukaryotic contexts.


Sign in / Sign up

Export Citation Format

Share Document