scholarly journals A CONSIDERATION OF THE PERMEABILITY OF CARTILAGE TO INORGANIC SULFATE

1961 ◽  
Vol 9 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Robert D. Campo ◽  
Dominic D. Dziewiatkowski

On the basis of an examination of autoradiograms of knee-joints fixed so as to remove chondroitin sulfate or inorganic sulfate, or to minimize the loss of both, it is suggested that the cartilage is permeable to inorganic sulfate in vivo and in vitro. In vivo and in vitro, almost as rapidly as it enters the cartilage, inorganic sulfate is utilized by the cells in the synthesis of chondroitin sulfate. The net result is a continuing low concentration of inorganic sulfate in the cartilage.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachiko Iwai ◽  
Hanako O. Ikeda ◽  
Hisashi Mera ◽  
Kohei Nishitani ◽  
Motoo Saito ◽  
...  

AbstractCurrently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.


1987 ◽  
Vol 253 (4) ◽  
pp. E331-E335 ◽  
Author(s):  
D. A. Young ◽  
H. Wallberg-Henriksson ◽  
M. D. Sleeper ◽  
J. O. Holloszy

Exercise is associated with an increase in permeability of muscle to glucose that reverses slowly (h) in fasting rats during recovery. Previous studies showed that carbohydrate feeding speeds and carbohydrate restriction slows reversal of the exercise-induced increase in glucose uptake. This study was designed to evaluate the roles of glucose transport, glycogen synthesis, and protein synthesis in the reversal process in rat epitrochlearis muscle. In contrast to recovery in vivo, when muscles were incubated without insulin in vitro, the exercise-induced increase in muscle permeability to sugar reversed rapidly regardless of whether glucose transport or glycogen synthesis occurred. Inhibition of protein synthesis did not prevent the reversal. Addition of 33% rat serum or a low concentration of insulin to the incubation medium markedly slowed reversal in vitro. We conclude that 1) prolonged persistence of the increased permeability of mammalian muscle to glucose after exercise requires a low concentration of insulin, and 2) reversal of the increase in permeability does not require glucose transport, glycogen synthesis, or protein synthesis.


2014 ◽  
Vol 96 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Hilke Brühl ◽  
Josef Cihak ◽  
Nicole Goebel ◽  
Yvonne Talke ◽  
Kerstin Renner ◽  
...  

2010 ◽  
Vol 9 (1) ◽  
pp. 301 ◽  
Author(s):  
Marco de Bruyn ◽  
Anna A Rybczynska ◽  
Yunwei Wei ◽  
Michael Schwenkert ◽  
Georg H Fey ◽  
...  

2006 ◽  
Vol 1 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Magali Cucchiarini ◽  
Jerome Sohier ◽  
Karin Mitosch ◽  
Gunter Kaul ◽  
David Zurakowski ◽  
...  

AbstractArticular cartilage repair might be stimulated by the controlled delivery of therapeutic factors. We tested the hypotheses whether TGF-ß1 can be released from a polymeric scaffold over a prolonged period of time in vitro and whether its transplantation modulates cartilage repair in vivo. Unloaded control or TGF-ß1 poly(ether-ester) copolymeric scaffolds were applied to osteochondral defects in the knee joints of rabbits. In vitro, a cumulative dose of 9 ng TGF-ß1 was released over 4 weeks. In vivo, there were no adverse effects on the synovial membrane. Defects treated with TGF-ß1 scaffolds showed no significant difference in individual parameters of chondrogenesis and in the average cartilage repair score after 3 weeks. There was a trend towards a smaller area (42.5 %) of the repair tissue that stained positive for safranin O in defects receiving TGF-ß1 scaffolds. The data indicate that TGF-ß1 is released from emulsion-coated scaffolds over a prolonged period of time in vitro and that application of these scaffolds does not significantly modulate cartilage repair after 3 weeks in vivo. Future studies need to address the importance of TGF-ß1 dose and release rate to modulate chondrogenesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 966-966
Author(s):  
Natalya Lyubynska ◽  
Jennifer Lauchle ◽  
Kevin Shannon ◽  
Benjamin S. Braun

Abstract Abstract 966 Mutations that deregulate cellular signaling are a hallmark of myeloproliferative neoplasms (MPNs), and pharmacologic inhibitors of MPN-associated proteins have redefined therapy for some MPNs. However, this strategy cannot yet be applied to juvenile- and chronic myelomonocytic leukemias (JMML and CMML). These diseases are characterized by aberrant N-Ras, K-Ras, Cbl, and SHP-2 proteins that are not easily targeted by drugs. An attractive alternative approach is to inhibit downstream effector pathways, which include the Raf/MEK/ERK, phosphoinositide-3-OH kinase (PI3K)/Akt, and Ral-GDS/Ral-A cascades. However, it is not known which of these pathways are crucial for the aberrant growth and survival of JMML and CMML cells and might therefore provide the best targets for therapy. To address these questions, we developed an accurate mouse model of JMML and CMML by expressing a conditional “knock-in” KrasLSL-G12D oncogene in bone marrow. We administered PD0325901, a potent and selective MEK inhibitor, to Mx1-Cre, KrasG12D mutant mice to test the hypothesis that the Raf→MEK→ERK cascade is necessary for MPN initiated by KrasG12D expression. Oral administration of PD0325901 5 mg/kg caused deep and durable MEK inhibition in primary bone marrow progenitors. Mx1-Cre, KrasG12D mice with established MPN and wild-type (WT) littermates were randomly assigned to receive PD0325901 5 mg/kg/day or a control vehicle. Treated Mx1-Cre, KrasG12D mice demonstrated rapid correction of leukocytosis and anemia, and reduction in splenomegaly. Treatment was also associated with dramatic improvement in the survival of Mx1-Cre, KrasG12D mice (8.1 vs. 2.0 weeks after entry, p=0.003). Two of three Mx1-Cre, KrasG12D mice that were treated for 12 weeks ultimately died with KrasG12D T-lineage leukemia/lymphoma, but none succumbed with progressive MPN. Flow cytometry of bone marrow and peripheral populations showed that PD0325901 reversed the granulocyte/monocyte progenitor bias and ineffective erythropoiesis in KrasG12D mice. However, PD0325901 did not eliminate the rearranged mutant Kras allele in myeloid progenitors, and these cells remained hypersensitive to GM-CSF in methylcellulose cultures. Therefore, PD0325901 did not eliminate Kras mutant cells, but rather modified their behavior in vivo so as to restore a normal output of the hematopoietic system. To further address the biologic effects of PD0325901 on growth of primary progenitor cells in vitro, we examined colony growth over a range of GM-CSF concentrations. Importantly, whereas in vitro exposure to PD0325901 did not selectively abrogate colony growth from bone marrow of naïve Mx1-Cre, KrasG12D mice in the presence of saturating doses of GM-CSF, a low concentration of PD0325901 eliminated the growth of cytokine-independent progenitor colonies. Even more strikingly, this also restored a normal GM-CSF dose response curve in clonogenic progenitors, eliminating the hypersensitive growth pattern that is a hallmark of MPN. Finally, even at saturating doses of GM-CSF, a low concentration of PD0325901 was sufficient to normalize the numbers and types of cells within the colonies. Together, these data show that a low concentration of PD0325901 is sufficient to impart a normal program of proliferation and differentiation in KrasG12D myeloid progenitors. These findings are highly consistent with the in vivo data. Collectively, our data suggest that aberrant MEK activation mediates most aspects of the MPN phenotype in the progenitor compartment and support the development of clinical trials to evaluate MEK inhibitors in patients with JMML and CMML. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 31 (05) ◽  
pp. 410-415 ◽  
Author(s):  
Kate Birdwhistell ◽  
Lohitash Karumbaiah ◽  
Samuel Franklin

AbstractActivated platelet-rich plasma (PRP), also referred to as platelet-rich fibrin (PRF), has been used to augment numerous techniques of cartilage repair in the knee but does not always result in superior quality of repair tissue. One possible reason that PRF does not consistently result in excellent cartilage regeneration is the transiency of growth factor provision with PRF. The objective of this study was to compare the release of transforming growth factor (TGF)-β1 from PRF and from PRP combined with a novel chondroitin sulfate glycosaminoglycan (CS-GAG) gel. PRP was prepared from nine healthy dogs and split into two aliquots: one activated with bovine thrombin and calcium chloride (CaCl2) to form PRF and the other aliquot was used to rehydrate a lyophilized CS-GAG gel. Both PRF and the CS-GAG gels were incubated in media for 13 days and media were collected, stored, and replaced every 48 hours and the concentration of TGF-β1 quantified in the media using an enzyme-linked immunosorbent assay. Concentrations of TGF-β1 in the media were up to three times greater with the CS-GAG gels and were significantly (p < 0.05) greater than with PRF on days 3, 5, 7, 9, and 13. Furthermore, TGF-β1 elution was still substantial at day 13 with the use of the CS-GAG gels. Additional in vitro work is warranted to characterize TGF-β1 elution from this CS-GAG gel with human PRP and to determine whether the use of these CS-GAG gels can augment cartilage repair in vivo.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shea N. Gardner ◽  
Crystal J. Jaing ◽  
Maher M. Elsheikh ◽  
José Peña ◽  
David A. Hysom ◽  
...  

Background. Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results. A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Each group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions. This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Haoyu Wu ◽  
Zhi Peng ◽  
Ying Xu ◽  
Zixuan Sheng ◽  
Yanshan Liu ◽  
...  

Abstract Background Osteoarthritis (OA), a prevalent degenerative disease characterized by degradation of extracellular matrix (ECM), still lacks effective disease-modifying therapy. Mesenchymal stem cells (MSCs) transplantation has been regarded as the most promising approach for OA treatment while engrafting cells alone might not be adequate for effective regeneration. Genetic modification has been used to optimize MSC-based therapy; however, there are still significant limitations that prevent the clinical translation of this therapy including low efficacy and safety concerns. Recently, chemically modified mRNA (modRNA) represents a promising alternative for the gene-enhanced MSC therapy. In this regard, we hypothesized that adipose derived stem cells (ADSCs) engineered with modRNA encoding insulin-like growth factor 1 (IGF-1) were superior to native ADSCs on ameliorating OA development. Methods Mouse ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IGF-1 modRNA engineered ADSCs (named as IGF-1-ADSCs) on chondrocytes. Finally, we evaluated the cell retention and chondroprotective effect of IGF-1-ADSCs in vivo using fluorescent labeling, histology and immunohistochemistry. Results modRNA transfected mouse ADSCs with high efficiency (85 ± 5%) and the IGF-1 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IGF-1 protein. In vitro, IGF-1-ADSCs induced increased anabolic markers expression of chondrocytes in inflammation environment compared to untreated ADSCs. In a murine OA model, histological and immunohistochemical analysis of knee joints harvested at 4 weeks and 8 weeks after OA induction suggested IGF-1-ADSCs had superior therapeutic effect over native ADSCs demonstrated by lower histological OARSI score and decreased loss of cartilage ECM. Conclusions These findings collectively supported the therapeutic potential of IGF-1-ADSCs for clinical OA management and cartilage repair.


Sign in / Sign up

Export Citation Format

Share Document