scholarly journals Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: suppressor and helper activities are inherent properties of distinct T-cell subclasses.

1976 ◽  
Vol 143 (6) ◽  
pp. 1382-1390 ◽  
Author(s):  
J Jandinski ◽  
H Cantor ◽  
T Tadakuma ◽  
D L Peavy ◽  
C W Pierce

Concanavalin A, a nonspecific polyclonal activator of T lymphocytes, activates Lyl and Ly23 subclasses to the same degree. After activation, the Ly23 subclass, but not the Lyl subclass, has the following properties: (a) Suppression of the antibody response to sheep erythrocytes (SRBC) in vitro. (b) Production of a soluble factor that suppresses the anti-SRBC response in vitro. (c) Suppression of the generation of cell-mediated cytotoxicity to H-2 target cells in vitro. Con A-activated cells of the Lyl subclass, but not the Ly23 subclass, express helper function in the anti-SRBC response in vitro. Because the intact Con A-stimulated T-cell population contains both cell types, these cells do not exert detectable helper effects in an anti-SRBC system in vitro, because the helper effect of Lyl cells is masked by the suppressor effect of the Ly23 cells. Each function is revealed by eliminating one or the other population with the relevant Ly antiserum. The resting T-cell population, before activation by Con A, also contains already programmed Lyl and Ly23 cells with similar helper and suppressor potentials, respectively. This is revealed by experiments with Ly subclasses which have been separated from the resting T-cell population and then stimulated by Con A. Thus helper and suppressor functions, as expressed in these systems, are manifestations of separate T-cell-differentiative pathways and do not depend upon stimulation of the cells by antigen.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 455-455 ◽  
Author(s):  
Federico Mingozzi ◽  
Marcela V. Maus ◽  
Denise E. Sabatino ◽  
Daniel J. Hui ◽  
John E.J. Rasko ◽  
...  

Abstract Efforts to establish an adeno-associated viral (AAV) vector-mediated gene therapy for the treatment of hemophilia B have been hindered by an immune response to the viral capsid antigen. Preclinical studies in small and large animal models of the disease showed long-term factor IX (F.IX) transgene expression and correction of the phenotype. However, in a recent phase I/II clinical trial in humans (Manno et al., Nat. Med. 2006), after hepatic gene transfer with an AAV-2 vector expressing human F.IX transgene, expression lasted for only a few weeks, declining to baseline concurrently with a peak in liver enzymes. We hypothesized that T cells directed towards AAV capsid antigens displayed by transduced hepatocytes were activated and these mediated destruction of the transduced hepatocytes, thereby causing loss of transgene expression and a transient transaminitis. Peripheral blood mononuclear cells isolated from AAV-infused subjects were stained with an AAV capsid-specific MHC class I pentamer either directly or after in vitro expansion. Two weeks after vector infusion 0.14% of circulating CD8+ T cells were capsid-specific on direct staining, and five weeks after infusion the capsid-specific population had expanded to 0.5% of the circulating CD8+ T cells, indicating proliferation of this T cell subset. By 20 weeks after vector infusion, the capsid-specific CD8+ T cell population had contracted to the level seen at 2 weeks. The expansion and contraction of this capsid-specific CD8+ T cell population paralleled the rise and fall of serum transaminases in the subject observed. Subsequent ex vivo studies of PBMC showed the presence of a readily expandable pool of capsid-specific CD8+ T cells up to 2.5 years post vector-infusion. Similarly, we were able to expand AAV-specific CD8+ T cells from peripheral blood of normal donors, suggesting the existence of a T cell memory pool. Expanded CD8+ T cells were functional as evidenced by specific lysis of HLA-matched target cells and by IFN-γsecretion in response to AAV epitopes. It has been argued that potentially harmful immune responses could be avoided by switching AAV serotypes, however, capsid protein sequences are highly conserved among different serotypes, as are some immunodominant epitopes that we identified. Indeed, we demonstrated that capsid-specific CD8+ T cells from AAV-infused hemophilic subjects functionally cross-react with AAV-8. Moreover, cells expanded from normal donors with AAV-2 vector capsids proliferated upon culture with AAV-8 capsids, demonstrating that both vectors could be processed appropriately in vitro to present the epitopic peptide to capsid-specific T cells. This suggests that AAV-2-specific memory CD8+ T cells normally present in humans likely would expand upon exposure to AAV-8 capsid epitopes. We conclude that the use of immunomodulatory therapy may be a better approach to achieving durable transgene expression in the setting of AAV-mediated gene therapy.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 663-679
Author(s):  
L Levitt ◽  
TJ Kipps ◽  
EG Engleman ◽  
PL Greenberg

The efficacy of four separate methods of human bone marrow T lymphocyte depletion was assessed, and the effect of T cells and monocytes on in vitro growth of marrow (CFU-GEMM, BFU-E, and CFU-GM) and peripheral blood (BFU-E) hematopoietic progenitors was determined. Extent of T cell depletion was assessed by multiparameter fluorescent cell sorter (FACS) analysis and by functional studies. Cells staining positively by FACS analysis for one or more of three separate fluorescent pan-T cell monoclonal antibodies (MCAbs) comprised 8.4% to 9.5% of control marrow mononuclear cells (MNCs). T cells constituted 3.2% to 5.1% of marrow following single, sequential, or combination treatment with two different pan-T cell MCAbs (Leu 1 and TM1) plus complement, 1.5% to 2.2% of marrow following solid-phase immunoabsorption (“panning”), 0.2% of marrow after sheep cell rosetting, and only 0.05% of marrow after FACS selective cell sorting and gated separation. T cells made up 59% to 73% of control peripheral blood MNCs and 0.8% to 2.8% of peripheral MNCs following sheep cell rosetting plus treatment with Leu 1 MCAb and complement. Mitogen (PHA, Con A) and allogeneic MLC-induced blastogenic responses (stimulation indices, experimental/control or E/C) revealed a concordant decrement in marrow T cell function after MCAb plus complement (E/C of 3.9 to 9.0), after panning (E/C of 1.6 to 3.5) and after sheep cell rosetting (E/C of 0.7 to 1.3), compared with control marrow (E/C of 5.3 to 15.7). After T cell depletion, marrow BFU-E growth was 95% to 120% of control, CFU-GM growth was 90% to 108% of control, and CFU-GEMM growth was 89% to 111% of control. Marrow T cell and/or monocyte depletion did not alter erythropoietin-dependent BFU-E growth in the absence of Mo-conditioned medium (81% to 95% of control), and the addition of as many as 50 to 100 X 10(3) purified marrow monocytes or T cells to 10(5) autologous nonadherent T cell-depleted marrow target cells had a negligible (P greater than .1) effect on marrow BFU-E growth in vitro. Peripheral blood (PB) BFU-E/10(5) T- depleted target cells were 106% +/- 19% of expected; PB BFU-E growth was significantly diminished after monocyte depletion alone (7% +/- 6% of expected) or after monocyte plus T cell depletion (8% +/- 4% of expected).(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 190 (8) ◽  
pp. 1081-1092 ◽  
Author(s):  
Anthony G. Doyle ◽  
Kathy Buttigieg ◽  
Penny Groves ◽  
Barbara J. Johnson ◽  
Anne Kelso

The capacity of activated T cells to alter their cytokine expression profiles after migration into an effector site has not previously been defined. We addressed this issue by paired daughter analysis of a type 1–polarized CD8+ effector T cell population freshly isolated from lung parenchyma of influenza virus–infected mice. Single T cells were activated to divide in vitro; individual daughter cells were then micromanipulated into secondary cultures with and without added IL-4 to assess their potential to express type 2 cytokine genes. The resultant subclones were analyzed for type 1 and 2 cytokine mRNAs at day 6–7. When the most activated (CD44highCD11ahigh) CD8+ subpopulation from infected lung was compared with naive or resting (CD44lowCD11alow) CD8+ cells from infected lung and from normal lymph nodes (LNs), both clonogenicity and plasticity of the cytokine response were highest in the LN population and lowest in the activated lung population, correlating inversely with effector function. Multipotential cells were nevertheless detected among clonogenic CD44highCD11ahigh lung cells at 30–50% of the frequency in normal LNs. The data indicate that activated CD8+ T cells can retain the ability to proliferate and express new cytokine genes in response to local stimuli after recruitment to an effector site.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Jennifer A. Juno ◽  
Kathleen M. Wragg ◽  
Anne B. Kristensen ◽  
Wen Shi Lee ◽  
Kevin J. Selva ◽  
...  

ABSTRACT Sexual HIV-1 transmission occurs primarily in the presence of semen. Although data from macaque studies suggest that CCR5+ CD4+ T cells are initial targets for HIV-1 infection, the impact of semen on T cell CCR5 expression and ligand production remains inconclusive. To determine if semen modulates the lymphocyte CCR5 receptor/ligand axis, primary human T cell CCR5 expression and natural killer (NK) cell anti-HIV-1 antibody-dependent beta chemokine production was assessed following seminal plasma (SP) exposure. Purified T cells produce sufficient quantities of RANTES to result in a significant decline in CCR5bright T cell frequency following 16 h of SP exposure (P = 0.03). Meanwhile, NK cells retain the capacity to produce limited amounts of MIP-1α/MIP-1β in response to anti-HIV-1 antibody-dependent stimulation (median, 9.5% MIP-1α+ and/or MIP-1β+), despite the immunosuppressive nature of SP. Although these in vitro experiments suggest that SP-induced CCR5 ligand production results in the loss of surface CCR5 expression on CD4+ T cells, the in vivo implications are unclear. We therefore vaginally exposed five pigtail macaques to SP and found that such exposure resulted in an increase in CCR5+ HIV-1 target cells in three of the animals. The in vivo data support a growing body of evidence suggesting that semen exposure recruits target cells to the vagina that are highly susceptible to HIV-1 infection, which has important implications for HIV-1 transmission and vaccine design. IMPORTANCE The majority of HIV-1 vaccine studies do not take into consideration the impact that semen exposure might have on the mucosal immune system. In this study, we demonstrate that seminal plasma (SP) exposure can alter CCR5 expression on T cells. Importantly, in vitro studies of T cells in culture cannot replicate the conditions under which immune cells might be recruited to the genital mucosa in vivo, leading to potentially erroneous conclusions about the impact of semen on mucosal HIV-1 susceptibility.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 866-872 ◽  
Author(s):  
G Inghirami ◽  
S Lederman ◽  
MJ Yellin ◽  
A Chadburn ◽  
L Chess ◽  
...  

Abstract The precise mechanisms regulating T-helper function have been intensively investigated. We and others have recently identified a new T-cell-B-cell-activating molecule called T-BAM that directs B-cell differentiation by interacting with the CD40 molecule on B cells. Using a specific monoclonal antibody against T-BAM (5C8), we have previously shown that T-BAM expressing T cells are predominantly CD4+CD8- and in normal lymphoid tissue have a unique distribution. However, no information has been obtained regarding the phenotype and functional properties of human neoplastic T cells. Therefore, we investigated T- BAM expression immunohistochemically in 87 well-characterized T-cell non-Hodgkin's lymphomas and lymphoid leukemias (LL). We found that 21/81 neoplasms expressed detectable T-BAM and these positive tumors belong almost exclusively to the CD4+CD8- subtype. In addition, to determine whether T-BAM expression could be induced on T-BAM-LL cells, we activated T-BAM-LLs in vitro and showed that T-BAM could be upregulated only in CD4+CD8- tumors. Our studies clearly show that T- BAM is constitutively expressed in a large number of T-cell neoplasms with a relative mature phenotype (CD4+CD8-) and that only CD4+ neoplastic T cells can be induced in vitro to express this molecule. Additional studies are necessary to identify the biologic significance of T-BAM expression and its potential and clinical implications.


2018 ◽  
Vol 215 (4) ◽  
pp. 1101-1113 ◽  
Author(s):  
Marc-Werner Dobenecker ◽  
Joon Seok Park ◽  
Jonas Marcello ◽  
Michael T. McCabe ◽  
Richard Gregory ◽  
...  

Differentiation and activation of T cells require the activity of numerous histone lysine methyltransferases (HMT) that control the transcriptional T cell output. One of the most potent regulators of T cell differentiation is the HMT Ezh2. Ezh2 is a key enzymatic component of polycomb repressive complex 2 (PRC2), which silences gene expression by histone H3 di/tri-methylation at lysine 27. Surprisingly, in many cell types, including T cells, Ezh2 is localized in both the nucleus and the cytosol. Here we show the presence of a nuclear-like PRC2 complex in T cell cytosol and demonstrate a role of cytosolic PRC2 in T cell antigen receptor (TCR)–mediated signaling. We show that short-term suppression of PRC2 precludes TCR-driven T cell activation in vitro. We also demonstrate that pharmacological inhibition of PRC2 in vivo greatly attenuates the severe T cell–driven autoimmunity caused by regulatory T cell depletion. Our data reveal cytoplasmic PRC2 is one of the most potent regulators of T cell activation and point toward the therapeutic potential of PRC2 inhibitors for the treatment of T cell–driven autoimmune diseases.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 578-578 ◽  
Author(s):  
Marie Bleakley ◽  
Audrey Mollerup ◽  
Colette Chaney ◽  
Michele Brown ◽  
Stanley R. Riddell

Abstract Graft versus host disease (GVHD) after allogeneic stem cell transplant (SCT) is initiated by the activation of alloreactive T cells by host dendritic cells (DC) in lymphoid tissue. Studies in murine models have demonstrated that selective depletion of naïve T cells abrogates GVHD in major and minor histocompatibility antigen (miH) mismatched SCT and provides for rapid reconstitution of memory T cell responses to pathogens. This suggests the memory subset may lack a sufficient repertoire of alloreactive T cells or fail to localize to sites where GVHD is initiated. If such a strategy were effective in humans, morbidity from GVHD would be reduced, but the graft versus leukemia (GVL) effect might be compromised. To explore the potential of this approach in humans, we developed a novel limiting dilution assay using DC as stimulator cells in vitro to analyze the frequency and repertoire of human miH reactive T cells in highly purified naïve and memory T cell subsets obtained from HLA identical volunteer donor pairs. For each pair, mature DC were derived by differentiation of CD14+ monocytes in vitro from one volunteer, and pure (>97%) populations of naïve (CD62L+, CD45 RA+, CD45RO-) and memory (CD45RO+) CD8 T cells were obtained by FACS sorting of CD8 enriched PBMC from the respective HLA identical sibling. Memory and naïve T cells were cultured for 12 days in 96 well plates at a range of concentrations with DC at a 30:1 ratio and IL12 (10 ng/ml), and IL15 (10 ng/ml) was added on day 7. On day 12, the wells were screened against target cells from each volunteer in a chromium release assay (CRA) to quantitative T cells with reactivity against miH. All wells with reactivity in this screening assay were subsequently expanded using anti CD3 antibody and IL2 and retested by CRA to validate the results of the screening assay. In multiple experiments using different HLA matched pairs, T cells with specific and reproducible cytotoxic activity (>15% lysis) against target cells from the DC donor but not autologous targets were only isolated from wells plated with naïve CD8 T cells, and there was no reproducible cytotoxicity from wells plated with memory T cells. This data demonstrates that miH specific CD8 T cells are found predominantly, and possibly exclusively, in the naïve T cell subset in humans. This data is consistent with a dramatically reduced repertoire of miH alloreactive T cells in the memory T cell pool and supports the development of protocols to prevent GVHD by selective depletion of CD45RA+ CD8+ T cells from the hematopoietic cell graft. However, T cells specific for miH also contribute to the GVL effect and CD45RA depletion would be expected to compromise antileukemic activity. Using the above approach for isolating miH specific CTL from naïve CD8 T cells, we have found a diverse repertoire of alloreactivity in most cultures and identified a subset of T cell lines and clones specific for miH presented selectively on hematopoietic cells. These T cells recognize primary ALL and AML samples that express the restricting HLA allele in vitro. MiH specific T cell clones can be reliably generated by this method using DC derived from monocytes of patients with advanced leukemia. Thus, it may be feasible to utilize this approach to isolate T cells specific for hematopoietic restricted miH for adoptive therapy as an adjunct to CD45RA depletion to preserve the GVL effect and allow separation of GVL from GVHD.


2004 ◽  
Vol 78 (10) ◽  
pp. 5184-5193 ◽  
Author(s):  
Diana M. Brainard ◽  
William G. Tharp ◽  
Elva Granado ◽  
Nicholas Miller ◽  
Alicja K. Trocha ◽  
...  

ABSTRACT Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.


1979 ◽  
Vol 149 (4) ◽  
pp. 856-869 ◽  
Author(s):  
T J Braciale

Purified type A influenza viral hemagglutinin stimulates an in vitro cell-mediated cytotoxic cell response that exhibits a high degree of specificity for the immunizing hemagglutinin. The response magnitude is proportional to the hemagglutinin dose used for stimulation. The lytic activity of the effector cells is H-2 restricted. Analysis of the specificity of the response indicated that these cytotoxic T cells readily distinguish target cells expressing serologically unrelated hemagglutinin from target cells bearing hemagglutinins serologically related to the stimulating hemagglutinin. Further analysis of the fine specificity of cytotoxic T-cell recognition with serologically cross-reactive type A influenza hemagglutinins revealed a hierarchy of cross-reactivity among these hemagglutinins that was the converse of the serologic hierarchy. These results are discussed in terms of possible differences and similarities in the specificity repertoire of cytotoxic T cells and antibodies. Possible implications of these findings from the standpoint of cytotoxic T-cell induction are also discussed.


Sign in / Sign up

Export Citation Format

Share Document