scholarly journals Terminal maturation of resting B cells by proliferation-independent B cells differentiation factors.

1986 ◽  
Vol 164 (2) ◽  
pp. 383-392 ◽  
Author(s):  
L Mayer

Using response to four different BCDF preparations as a model of B cell maturation, we have shown that induction of B cell proliferation abrogates terminal maturation of these cells. In fact, response to some BCDFs can occur in the presence of inhibitors of DNA replication, suggesting that there are proliferation-independent as well as proliferation-dependent BCDFs. These findings cannot be explained by changes in the kinetics of the BCDF response, nor can they be reversed by repletion of media or changing cell densities. Proliferation-independent BCDFs appear to exert their effects on dense, resting 4F2- B cells rather than more activated B cells. This is in contrast to B cell differentiation signals of IL-2 alone or SAC and IL-2 in concert. These data suggest that the current models of B cell activation and maturation may require some reorganization, relegating the proliferative phase of B cell maturation to a lesser role. In addition, evidence is provided for the fact that the resting B cell may have the full complement of receptors for BCDF as well as BCGF and BCPF and may help account for the inherent nonspecificity of the immune response.

2000 ◽  
Vol 192 (10) ◽  
pp. 1453-1466 ◽  
Author(s):  
Marcel Batten ◽  
Joanna Groom ◽  
Teresa G. Cachero ◽  
Fang Qian ◽  
Pascal Schneider ◽  
...  

B cell maturation is a very selective process that requires finely tuned differentiation and survival signals. B cell activation factor from the TNF family (BAFF) is a TNF family member that binds to B cells and potentiates B cell receptor (BCR)-mediated proliferation. A role for BAFF in B cell survival was suggested by the observation of reduced peripheral B cell numbers in mice treated with reagents blocking BAFF, and high Bcl-2 levels detected in B cells from BAFF transgenic (Tg) mice. We tested in vitro the survival effect of BAFF on lymphocytes derived from primary and secondary lymphoid organs. BAFF induced survival of a subset of splenic immature B cells, referred to as transitional type 2 (T2) B cells. BAFF treatment allowed T2 B cells to survive and differentiate into mature B cells in response to signals through the BCR. The T2 and the marginal zone (MZ) B cell compartments were particularly enlarged in BAFF Tg mice. Immature transitional B cells are targets for negative selection, a feature thought to promote self-tolerance. These findings support a model in which excessive BAFF-mediated survival of peripheral immature B cells contributes to the emergence and maturation of autoreactive B cells, skewed towards the MZ compartment. This work provides new clues on mechanisms regulating B cell maturation and tolerance.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2021 ◽  
Author(s):  
Dillon G Patterson ◽  
Anna K Kania ◽  
Madeline J Price ◽  
James R Rose ◽  
Christopher D Scharer ◽  
...  

Cell division is an essential component of B cell differentiation to antibody-secreting plasma cells, with critical reprogramming occurring during the initial stages of B cell activation. However, a complete understanding of the factors that coordinate early reprogramming events in vivo remain to be determined. In this study, we examined the initial reprogramming by IRF4 in activated B cells using an adoptive transfer system and mice with a B cell-specific deletion of IRF4. IRF4-deficient B cells responding to influenza, NP-Ficoll and LPS divided, but stalled during the proliferative response. Gene expression profiling of IRF4-deficient B cells at discrete divisions revealed IRF4 was critical for inducing MYC target genes, oxidative phosphorylation, and glycolysis. Moreover, IRF4-deficient B cells maintained an inflammatory gene expression signature. Complementary chromatin accessibility analyses established a hierarchy of IRF4 activity and identified networks of dysregulated transcription factor families in IRF4-deficient B cells, including E-box binding bHLH family members. Indeed, B cells lacking IRF4 failed to fully induce Myc after stimulation and displayed aberrant cell cycle distribution. Furthermore, IRF4-deficient B cells showed reduced mTORC1 activity and failed to initiate the B cell-activation unfolded protein response and grow in cell size. Myc overexpression in IRF4-deficient was sufficient to overcome the cell growth defect. Together, these data reveal an IRF4-MYC-mTORC1 relationship critical for controlling cell growth and the proliferative response during B cell differentiation.


2021 ◽  
Vol 8 (1) ◽  
pp. e000445
Author(s):  
Felice Rivellese ◽  
Sotiria Manou-Stathopoulou ◽  
Daniele Mauro ◽  
Katriona Goldmann ◽  
Debasish Pyne ◽  
...  

ObjectiveTo evaluate the effects of targeting Ikaros and Aiolos by cereblon modulator iberdomide on the activation and differentiation of B-cells from patients with systemic lupus erythematosus (SLE).MethodsCD19+ B-cells isolated from the peripheral blood of patients with SLE (n=41) were cultured with TLR7 ligand resiquimod ±IFNα together with iberdomide or control from day 0 (n=16). Additionally, in vitro B-cell differentiation was induced by stimulation with IL-2/IL-10/IL-15/CD40L/resiquimod with iberdomide or control, given at day 0 or at day 4. At day 5, immunoglobulins were measured by ELISA and cells analysed by flow cytometry. RNA-Seq was performed on fluorescence-activated cell-sorted CD27-IgD+ naïve-B-cells and CD20lowCD27+CD38+ plasmablasts to investigate the transcriptional consequences of iberdomide.ResultsIberdomide significantly inhibited the TLR7 and IFNα-mediated production of immunoglobulins from SLE B-cells and the production of antinuclear antibodies as well as significantly reducing the number of CD27+CD38+ plasmablasts (0.3±0.18, vehicle 1.01±0.56, p=0.011) and CD138+ plasma cells (0.12±0.06, vehicle 0.28±0.02, p=0.03). Additionally, treatment with iberdomide from day 0 significantly inhibited the differentiation of SLE B-cells into plasmablasts (6.4±13.5 vs vehicle 34.9±20.1, p=0.013) and antibody production. When given at later stages of differentiation, iberdomide did not affect the numbers of plasmablasts or the production of antibodies; however, it induced a significant modulation of gene expression involving IKZF1 and IKZF3 transcriptional programmes in both naïve B-cells and plasmablasts (400 and 461 differentially modulated genes, respectively, false discovery rate<0.05).ConclusionThese results demonstrate the relevance of Ikaros and Aiolos as therapeutic targets in SLE due to their ability to modulate B cell activation and differentiation downstream of TLR7.


Author(s):  
Aurélie De Groof ◽  
Julie Ducreux ◽  
Floor Aleva ◽  
Andrew J Long ◽  
Alina Ferster ◽  
...  

Abstract Objective Type I IFNs play a well-known role in the pathogenesis of SLE, through activation of CD4 T and antigen-presenting cells. Here, we investigated the effects of IFN alpha (IFNα) on SLE B cell activation and differentiation. Methods Peripheral blood mononuclear cells (PBMCs) and purified total or naïve B cells were obtained from healthy controls and SLE patients. The effects of IFNα on B cell differentiation were studied by flow cytometry. The role of STAT3 in B cell responses to IFNα was studied using pharmacological inhibitors and PBMCs from STAT3-deficient individuals. Results Incubation of normal PBMCs with IFNα induces a B cell differentiation pattern as observed spontaneously in SLE PBMCs. IFNα displays direct stimulatory effects on purified naïve B cells from healthy individuals, as evidenced by a significant induction of cell surface CD38 and CD95 in the presence of the cytokine. In purified naïve B cells, IFNα also induces STAT3 phosphorylation. IFNα-induced naïve B cell differentiation in total PBMCs is significantly inhibited in the presence of STAT3 inhibitors, or in PBMCs from individuals with STAT3 loss of function mutations. Spontaneous levels of STAT3, but not STAT1, phosphorylation are significantly higher in total B cells from SLE patients compared with controls. Pharmacological STAT3 inhibition in SLE PBMCs inhibits naïve B cell activation and differentiation. Conclusion IFNα displays direct stimulatory effects on B cell differentiation and activation in SLE. STAT3 phosphorylation mediates the effects of IFNα stimulation in naïve B cells, an observation that opens new therapeutic perspectives in SLE.


1986 ◽  
Vol 164 (5) ◽  
pp. 1760-1772 ◽  
Author(s):  
M K Crow ◽  
J A Jover ◽  
S M Friedman

We have explored the consequences for the B cell of cognate interaction with T cells. Early expression of the B cell-restricted cell surface activation antigen, BLAST-2, has been used as an assay system to measure direct T-B cell collaboration. BLAST-2 is preferentially expressed by allogenic B cells cultured with MHC class II antigen-restricted Th clone cells matched to the DR specificity of the target B cells. B cells cultured with DR-mismatched allospecific Th cells express minimal BLAST-2. Th cell-induced BLAST-2 expression appears to be accessory cell independent and occurs as early as 8 h after initiation of culture, with peak expression at 18 h. Direct T-B cell contact, rather than Th-derived lymphokines, provides the most efficient stimulus for BLAST-2 expression. Crosslinking of sIg on B cells is a poor stimulus for BLAST-2 expression. The BLAST-2 assay permits the evaluation of early events associated with B cell activation through cognate interactions, and may facilitate subsequent studies of the mechanism of B cell differentiation.


1984 ◽  
Vol 159 (4) ◽  
pp. 1169-1188 ◽  
Author(s):  
R R Hardy ◽  
K Hayakawa ◽  
D R Parks ◽  
L A Herzenberg ◽  
L A Herzenberg

Subpopulations of mouse B cells express different amounts of two antigens (BLA-1 and BLA-2) recognized by rat monoclonal antibodies (53-10.1 and 30-E2). Two-color immunofluorescence analysis on the fluorescence-activated cell sorter (FACS) shows that the 53-10.1 monoclonal antibody reacts with a similar proportion of splenic B cells from normal and CBA/N (xid) mice, whereas 30-E2 reacts with most CBA/N B cells but with only a fraction of normal B cells. Data from three- and four-color immunofluorescence analyses with xid, athymic (nude), and normal mice suggest that the order in which these antigens are lost during B cell differentiation distinguishes two B cell lineages: immature B cells express both antigens, intermediate-stage B cells of one or the other lineage express only BLA-1 or only BLA-2, respectively, and mature resting B cells express neither. CBA/N mice lack one of the putative intermediate populations (BLA-1+,2-); thus, this population apparently gives rise to the predominant mature B cell population, which is present in normal adult spleen and lymph node but is missing in CBA/N. The other putative intermediate population (BLA-1-,2+) is decreased by two- to threefold in spleens from nude mice compared with strain-matched controls. Both BLA-1 and BLA-2 antigens rapidly reappear after specific (antigen) or nonspecific (lipopolysaccharide) B cell activation. IgM plaque-forming cells (PFC) derived from such activated cells continue to express both antigens while IgG PFC express only BLA-1.


1983 ◽  
Vol 157 (6) ◽  
pp. 1815-1827 ◽  
Author(s):  
G J Prud'homme ◽  
R S Balderas ◽  
F J Dixon ◽  
A N Theofilopoulos

B cell hyperactivity, a feature common to all lupus-prone murine strains, may be caused by hyperresponsiveness to, overproduction of, or bypassing of certain signals required for B cell activation, proliferation, and differentiation. In this study, we have compared the responses of B cells from three lupus-prone strains of mice (BXSB males, MRL and NZB/W females) and normal strains in a number of assays for which two or more signals are required to obtain a response. In medium to low density cultures of B cells from BXSB and NZB/W but not MRL/l lupus mice, the cells' proliferation induced by bacterial lipopolysaccharide (LPS) or anti-mu antibody was much higher than that of B cells from normal controls. At low B cell density, polyclonal activation by these substances and subsequent Ig secretion were dependent on accessory signals present in supernatants of concanavalin A-treated normal lymphocytes (CAS) or on the MRL/l proliferating T cell-derived B cell differentiation factor (L-BCDF) in both lupus-prone and immunologically normal mice. However, the responses of B cells from BXSB and NZB/W, but not MRL/l, mice to these accessory signals were higher than those of normal mice. Ig synthesis by fresh B cells of BXSB and NZB/W mice cultured in the absence of mitogens but in the presence of CAS or L-BCDF was higher than by similar cells from other strains, suggesting an increased frequency of B cells activated in vivo in these two autoimmune strains of mice. The patterns of IgG subclass secretion in response to LPS (without added CAS or L-BCDF) were abnormal in all lupus strains, with a predominance of IgG2b and/or IgG2a and low levels of IgG3, contrary to normal B cells for which IgG3 synthesis predominated. However, IgG1 synthesis in vitro by autoimmune and normal B cells alike was highly dependent on T cell-derived soluble mediators. Antigen-specific responses to SRBC in vitro of B cells from all lupus strains, like those of B cells from normal strains, required a minimum of three signals (antigen, LPS, T cell-derived antigen nonspecific helper factors). Yet, once triggered, B cells of BXSB and NZB/W mice gave higher responses than those of the other strains. We conclude that B cells of lupus mice have signal requirements similar to those of normal mice. Nevertheless, B cells of BXSB and NZB/W, but not MRL/l, lupus mice hyperrespond or process some accessory signals abnormally.


2021 ◽  
Vol 9 ◽  
Author(s):  
Johannes Dirks ◽  
Jonas Fischer ◽  
Gabriele Haase ◽  
Annette Holl-Wieden ◽  
Christine Hofmann ◽  
...  

Juvenile idiopathic arthritis (JIA) encompasses a heterogeneous group of diseases. The appearance of antinuclear antibodies (ANAs) in almost half of the patients suggests B cell dysregulation as a distinct pathomechanism in these patients. Additionally, ANAs were considered potential biomarkers encompassing a clinically homogenous subgroup of JIA patients. However, in ANA+ JIA patients, the site of dysregulated B cell activation as well as the B cell subsets involved in this process is still unknown. Hence, in this cross-sectional study, we aimed in an explorative approach at characterizing potential divergences in B cell differentiation in ANA+ JIA patients by assessing the distribution of peripheral blood (PB) and synovial fluid (SF) B cell subpopulations using flow cytometry. The frequency of transitional as well as switched-memory B cells was higher in PB of JIA patients than in healthy controls. There were no differences in the distribution of B cell subsets between ANA- and ANA+ patients in PB. However, the composition of SF B cells was different between ANA- and ANA+ patients with increased frequencies of CD21lo/−CD27−IgM− “double negative” (DN) B cells in the latter. DN B cells might be a characteristic subset expanding in the joints of ANA+ JIA patients and are potentially involved in the antinuclear immune response in these patients. The results of our explorative study might foster further research dissecting the pathogenesis of ANA+ JIA patients.


Sign in / Sign up

Export Citation Format

Share Document