scholarly journals Activation of Natural Killer T Cells Potentiates or Prevents Experimental Autoimmune Encephalomyelitis

2001 ◽  
Vol 194 (12) ◽  
pp. 1789-1799 ◽  
Author(s):  
Alex W. Jahng ◽  
Igor Maricic ◽  
Brian Pedersen ◽  
Nicolas Burdin ◽  
Olga Naidenko ◽  
...  

Natural killer (NK) T cells recognize lipid antigens in the context of the major histocompatibility complex (MHC) class 1–like molecule CD1 and rapidly secrete large amounts of the cytokines interferon (IFN)-γ and interleukin (IL)-4 upon T cell receptor (TCR) engagement. We have asked whether NK T cell activation influences adaptive T cell responses to myelin antigens and their ability to cause experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. While simultaneous activation of NK T cells with the glycolipid α-galactosylceramide (α-GalCer) and myelin-reactive T cells potentiates EAE in B10.PL mice, prior activation of NK T cells protects against disease. Exacerbation of EAE is mediated by an enhanced T helper type 1 (Th1) response to myelin basic protein and is lost in mice deficient in IFN-γ. Protection is mediated by immune deviation of the anti-myelin basic protein (MBP) response and is dependent upon the secretion of IL-4. The modulatory effect of α-GalCer requires the CD1d antigen presentation pathway and is dependent upon the nature of the NK T cell response in B10.PL or C57BL/6 mice. Because CD1 molecules are nonpolymorphic and remarkably conserved among different species, modulation of NK T cell activation represents a target for intervention in T cell–mediated autoimmune diseases.

Author(s):  
Yan Yan ◽  
Wei Zhao ◽  
Wei Liu ◽  
Yan Li ◽  
Xu Wang ◽  
...  

Abstract Background Chemokine (C–C motif) ligand 19 (CCL19) is a leukocyte chemoattractant that plays a crucial role in cell trafficking and leukocyte activation. Dysfunctional CD8+ T cells play a crucial role in persistent HBV infection. However, whether HBV can be cleared by CCL19-activated immunity remains unclear. Methods We assessed the effects of CCL19 on the activation of PBMCs in patients with HBV infection. We also examined how CCL19 influences HBV clearance and modulates HBV-responsive T cells in a mouse model of chronic hepatitis B (CHB). In addition, C–C chemokine-receptor type 7 (CCR7) knockdown mice were used to elucidate the underlying mechanism of CCL19/CCR7 axis-induced immune activation. Results From in vitro experiments, we found that CCL19 enhanced the frequencies of Ag-responsive IFN-γ+ CD8+ T cells from patients by approximately twofold, while CCR7 knockdown (LV-shCCR7) and LY294002 partially suppressed IFN-γ secretion. In mice, CCL19 overexpression led to rapid clearance of intrahepatic HBV likely through increased intrahepatic CD8+ T-cell proportion, decreased frequency of PD-1+ CD8+ T cells in blood and compromised suppression of hepatic APCs, with lymphocytes producing a significantly high level of Ag-responsive TNF-α and IFN-γ from CD8+ T cells. In both CCL19 over expressing and CCR7 knockdown (AAV-shCCR7) CHB mice, the frequency of CD8+ T-cell activation-induced cell death (AICD) increased, and a high level of Ag-responsive TNF-α and low levels of CD8+ regulatory T (Treg) cells were observed. Conclusions Findings in this study provide insights into how CCL19/CCR7 axis modulates the host immune system, which may promote the development of immunotherapeutic strategies for HBV treatment by overcoming T-cell tolerance.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3948
Author(s):  
Kazumasa Oya ◽  
Yoshiyuki Nakamura ◽  
Zhu Zhenjie ◽  
Ryota Tanaka ◽  
Naoko Okiyama ◽  
...  

The exact mechanisms of the imiquimod (IMQ)-induced antitumor effect have not been fully understood. Although both topical IMQ treatment and anti-PD-1 antibody may be used for primary skin lesions or skin metastases of various cancers, the efficacy of each monotherapy for these lesions is insufficient. Using a murine tumor model and human samples, we aimed to elucidate the detailed mechanisms of the IMQ-induced antitumor effect and analyzed the antitumor effect of combination therapy of topical IMQ plus anti-PD-1 antibody. Topical IMQ significantly suppressed the tumor growth of MC38 in wildtype mice. IMQ upregulated interferon γ (IFN-γ) expression in CD8+ T cells in both the lymph nodes and the tumor, and the antitumor effect was abolished in both Rag1-deficient mice and IFN-γ-deficient mice, indicating that IFN-γ produced by CD8+ T cells play a crucial role in the IMQ-induced antitumor effect. IMQ also upregulated PD-1 expression in T cells as well as PD-L1/PD-L2 expression in myeloid cells, suggesting that IMQ induces not only T-cell activation but also T-cell exhaustion by enhanced PD-1 inhibitory signaling. Combination therapy of topical IMQ plus anti-PD-1 antibody exerted a significantly potent antitumor effect when compared with each single therapy, indicating that the combination therapy is a promising therapy for the skin lesions of various cancers.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 886-896 ◽  
Author(s):  
David Sancho ◽  
Marı́a Yáñez-Mó ◽  
Reyes Tejedor ◽  
Francisco Sánchez-Madrid

Abstract Cell adhesion molecules have a key role in the migration of T cells to inflammatory foci. However, the effect of the endothelial-lymphocyte interaction on the activation of the latter cells remains unresolved. We have studied the effect of resting and stimulated endothelial cells (ECs) on the activation of peripheral blood T cells (PBTLs), as assessed by the expression of CD69 and CD25 activation antigens. The incubation of PBTLs with tumor necrosis factor-–activated EC monolayers, either alive or fixed, induced the expression of CD69 but not CD25, preferentially in the CD8+CD45RO+ cell subset. Furthermore, it induced the production of cytokines such as IFN-γ, but not that of interleukin-2 (IL-2) and IL-4. EC treated with other stimuli such as IL-1β, IFN-γ, or lipopolysaccharide also showed the same proactivatory effect on T cells. Lymphocyte activation was almost completely inhibited by blocking anti-CD18 and anti–intercellular adhesion molecule-1 (anti–ICAM-1) monoclonal antibodies (MoAbs), but only slightly affected by MoAbs against CD49d, vascular cell adhesion molecule-1, and anti–IL-15. In addition, the interaction of PBTL with immobilized ICAM-1 induced CD69 expression in the same memory T-cell subset. IL-15 induced T-cell activation with expression of CD69 and CD25, and production of IFN-γ, and its effect was additive with that triggered by cell adhesion to either EC or immobilized ICAM-1. The transmigration of PBTLs through either confluent EC monolayers or ICAM-1–coated membranes also induced efficiently the expression of CD69. When IL-15 was used as chemoattractant in these assays, a further enhancement in CD69 expression was observed in migrated cells. Together these results indicate that stimulated endothelium may have an important role in T-cell activation, through the lymphocyte function antigen-1/ICAM-1 pathway, and that IL-15 efficiently cooperates in this phenomenon. These observations could account for the abundance of CD69+ cells in the lymphocytic infiltrates of several chronic inflammatory diseases.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1141-1141
Author(s):  
Elena E. Solomou ◽  
Valeria Visconte ◽  
Federica Gibellini ◽  
Neal S. Young

Abstract Ligation of the signaling lymphocyte activation molecule (SLAM), a member of the immunoglobulin superfamily expressed in T and B cells, results in T cell activation and Th1 cytokine production. SAP is a small cytoplasmic protein expressed in T- and NK cells that controls the activation signals mediated by SLAM. On T cell activation, SAP binds to Fyn kinase; Fyn is activated and phosphorylates tyrosine residues on SLAM; phosphorylation results in the formation of a complex that selectively down-regulates co-stimulatory signals in activated T cells, resulting in inhibition of IFN-γ production. Thus SAP acts as a natural suppressor of SLAM-mediated T cell activation, and, in the absence of SAP, T cells are constitutively activated and overproduce IFN-γ. Mutations in the SAP gene lead to abnormal T cell activation and enhanced Th1 cytokine production in mouse models and in humans: about half of patients with X-linked lympoproliferative disease (XLP) have functionally disabling SAP mutations. Acquired aplastic anemia (AA) is a bone marrow failure syndrome in which hematopoietic cell destruction is effected by cytotoxic T cells and type 1 cytokines. We have recently shown that T cells from patients with AA have increased protein levels of T-bet, resulting in IFN-γ overproduction (Solomou EE et al, Blood2006; 107:3983). IFN-γ inhibits hematopoietic stem cell proliferation and induces Fas-mediated apoptosis; stem cell depletion results in marrow hypoplasia and peripheral blood pancytopenia. We examined SAP expression as an explanation for aberrant T cell activation and extreme Th1 polarization. SAP protein expression on immunoblot was very low to absent in unstimulated T cells from 16 of 20 AA patients examined, as compared to normal levels of expression in equivalent numbers of healthy donors (p<0.001). No significant differences were detected in Fyn and SLAM protein levels between AA and controls. SAP mRNA levels were also significantly decreased in T cells from those AA patients with low SAP protein levels, as determined by RT-PCR. Peripheral blood DNA samples from 18 patients with AA were analyzed for SAP mutations: three novel intronic mutations, not present in controls, were identified among 7 unrelated patients: one mutation was in the promoter region of SAP (position 106, C to T; 3 patients), and two mutations in the intron-exon junction between exons 1 and 2 (position 38975, C toT; 3 patients) and 3 and 4 (position 62771, C to A; 1 patient). IFN-γ, as measured by ELISA, in three patients with undetectable SAP protein levels was significantly increased compared to healthy controls (n=5, p<0.001). Increased IFN-γ levels and Th1 polarization in AA can in part be explained by functional SAP deficiency. SAP-deficient T cells in AA would be unable to block co-stimulatory signals, leading to an activated T cell phenotype and ultimately hematopoietic cell destruction and bone marrow failure. The SAP-deficient phenotype in T cells from patients with aplastic anemia may be secondary to subtle genetic alteration in the gene’s regulation (abnormal promoter binding sites or epigenetic modulation due to mutations in introns) or as yet unidentified aberrant upstream pathways (Ets-1 and Ets-2, the transcription factors that regulate SAP expression).


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4801-4801 ◽  
Author(s):  
Parvin Forghani ◽  
Wayne Harris ◽  
jian-Ming Li ◽  
M.R. Khorramizadeh ◽  
Edmund Waller

Abstract Abstract 4801 MDSC have been described as an important negative regulators of autologous anti-cancer immune responses. Considering the important role of MDSC in immune regulation in allogenic stem cell and organ transplantation, we undertook an investigation of the mechanism(s) by which MDSC inhibit T–cell activation and proliferation, and tested the hypothesis that local cytokine secretion or IDO activity is required for suppression of T-cell proliferation. Two separate populations CD11bhiGr-1hi and CD11bhi Gr-1int were isolated by high-speed FACS from lineage- BM antigen presenting cells (C57 & BALB/c mice). Both MDSC subsets had potent capacity for in–vitro suppression of CD4+ and CD8+ T cells proliferation in response to anti-CD3/anti-CD28 beads and Con A. A ratio of 0.5/1 MDSC: T-cells were sufficient to inhibit >66% control levels of T-cell proliferation. MDSC isolated from transgenic mice that had been “knocked-out” for IFN-γ and IDO had equivalent suppressive activity as MDSC from wild-type donors. Addition of saturating concentrations of anti IL-10 and IL-4 MAb, or in combination with anti- IFN-γ MAb did not abrogate MDSC-suppressive activity. Ex-vivo culture of MDSC with mitogen-activated T-cells generated two—fold more Fox-p3 T-reg compared with cultures of T cell plus mitogen. Data will be presented regarding the novel role of MDSC involving in the homeostasis regulation of normal T-cell activation and proliferation in non-tumor-bearing mice. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 886-896 ◽  
Author(s):  
David Sancho ◽  
Marı́a Yáñez-Mó ◽  
Reyes Tejedor ◽  
Francisco Sánchez-Madrid

Cell adhesion molecules have a key role in the migration of T cells to inflammatory foci. However, the effect of the endothelial-lymphocyte interaction on the activation of the latter cells remains unresolved. We have studied the effect of resting and stimulated endothelial cells (ECs) on the activation of peripheral blood T cells (PBTLs), as assessed by the expression of CD69 and CD25 activation antigens. The incubation of PBTLs with tumor necrosis factor-–activated EC monolayers, either alive or fixed, induced the expression of CD69 but not CD25, preferentially in the CD8+CD45RO+ cell subset. Furthermore, it induced the production of cytokines such as IFN-γ, but not that of interleukin-2 (IL-2) and IL-4. EC treated with other stimuli such as IL-1β, IFN-γ, or lipopolysaccharide also showed the same proactivatory effect on T cells. Lymphocyte activation was almost completely inhibited by blocking anti-CD18 and anti–intercellular adhesion molecule-1 (anti–ICAM-1) monoclonal antibodies (MoAbs), but only slightly affected by MoAbs against CD49d, vascular cell adhesion molecule-1, and anti–IL-15. In addition, the interaction of PBTL with immobilized ICAM-1 induced CD69 expression in the same memory T-cell subset. IL-15 induced T-cell activation with expression of CD69 and CD25, and production of IFN-γ, and its effect was additive with that triggered by cell adhesion to either EC or immobilized ICAM-1. The transmigration of PBTLs through either confluent EC monolayers or ICAM-1–coated membranes also induced efficiently the expression of CD69. When IL-15 was used as chemoattractant in these assays, a further enhancement in CD69 expression was observed in migrated cells. Together these results indicate that stimulated endothelium may have an important role in T-cell activation, through the lymphocyte function antigen-1/ICAM-1 pathway, and that IL-15 efficiently cooperates in this phenomenon. These observations could account for the abundance of CD69+ cells in the lymphocytic infiltrates of several chronic inflammatory diseases.


Gut ◽  
1998 ◽  
Vol 43 (4) ◽  
pp. 499-505 ◽  
Author(s):  
A Stallmach ◽  
F Schäfer ◽  
S Hoffmann ◽  
S Weber ◽  
I Müller-Molaian ◽  
...  

Background—Immunoregulatory abnormalities of T cells might be of importance in the pathogenesis of pouchitis after ileoanal pouch anastomosis (IAP).Aims—To characterise T cell subsets, their state of activation, and production of cytokines in inflamed and non-inflamed pouches in patients with ulcerative colitis (UC) and familial adenomatous polyposis (FAP). The influence of T cell activation on mucosal transformation was also studied.Patients—Mucosal biopsy specimens were taken from 42 patients with IAP (33 with UC and nine with FAP).Methods—Mononuclear cells were isolated by standard techniques and characterised by three colour flow cytometry. Interferon γ (IFN-γ) production was studied using the ELISPOT technique.Results—In patients with UC with pouchitis there was a significant increase in the CD4:CD8 ratio, expression of activation markers on CD3+ cells, and number of IFNγ producing mononuclear cells compared with patients with UC without pouchitis (CD4:CD8 ratio 1.3 (range 0.7–2.7) versus 0.6 (0.1–1.0), p=0.012). In addition, a positive correlation between increased crypt depth and the number of CD4+ cells (r=0.57) was shown.Conclusion—The observed increase in activated mucosal CD4+ T cells and IFN-γ production might lead to mucosal destruction and crypt hyperplasia as seen in pouchitis.


Blood ◽  
2012 ◽  
Vol 119 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Min Chen ◽  
Kumar Felix ◽  
Jin Wang

AbstractAfter stimulation of antigen-specific T cells, dendritic cell (DCs) are susceptible to killing by these activated T cells that involve perforin and Fas-dependent mechanisms. Fas-dependent DC apoptosis has been shown to limit DC accumulation and prevent the development of autoimmunity. However, a role for perforin in the maintenance of DC homeostasis for immune regulation remains to be determined. Here we show that perforin deficiency in mice, together with the deletion of Fas in DCs (perforin−/−DC-Fas−/−), led to DC accumulation, uncontrolled T-cell activation, and IFN-γ production by CD8+ T cells, resulting in the development of lethal hemophagocytic lymphohistiocytosis. Consistently, adoptive transfer of Fas−/− DCs induced over-activation and IFN-γ production in perforin−/− CD8+ T cells. Neutralization of IFN-γ prevented the spreading of inflammatory responses to different cell types and protected the survival of perforin−/−DC-Fas−/− mice. Our data suggest that perforin and Fas synergize in the maintenance of DC homeostasis to limit T cell activation, and prevent the initiation of an inflammatory cascade.


2015 ◽  
Vol 37 (1) ◽  
pp. 269-275 ◽  
Author(s):  
Ramona Halmer ◽  
Laura Davies ◽  
Yang Liu ◽  
Klaus Fassbender ◽  
Silke Walter

Background: Multiple sclerosis is the most common autoimmune disease of the central nervous system in young adults and histopathologically characterized by inflammation, demyelination and gliosis. It is considered as a CD4+ T cell-mediated disease, but also a disease-promoting role of the innate immune system has been proposed, based e.g. on the observation that innate immune receptors modulate disease severity of experimental autoimmune encephalomyelitis. Recent studies of our group provided first evidence for a key role of the innate immune LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis. CD14-deficient experimental autoimmune encephalomyelitis mice showed increased clinical symptoms and enhanced infiltration of monocytes and neutrophils in brain and spinal cord. Methods: In the current study, we further investigated the causes of the disease aggravation by CD14-deficiency and examined T cell activation, also focusing on the costimulatory molecules CTLA-4 and CD28, and T cell migration capacity over the blood brain barrier by FACS analysis, in vitro adhesion and transmigration assays. Results: In the results, we observed a significantly increased migration of CD14-deficient lymphocytes across an endothelial monolayer. In contrast, we did not see any differences in expression levels of TCR/CTLA-4 or TCR/CD28 and lymphocyte adhesion to endothelial cells from CD14-deficient compared to wildtype mice. Conclusion: The results demonstrate an important role of CD14 in migration of lymphocytes, and strengthen the importance of innate immune receptors in adaptive immune disorders, such as multiple sclerosis.


2004 ◽  
Vol 199 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Naoto Kawakami ◽  
Silke Lassmann ◽  
Zhaoxia Li ◽  
Francesca Odoardi ◽  
Thomas Ritter ◽  
...  

The clinical picture of experimental autoimmune encephalomyelitis (EAE) is critically dependent on the nature of the target autoantigen and the genetic background of the experimental animals. Potentially lethal EAE is mediated by myelin basic protein (MBP)–specific T cells in Lewis rats, whereas transfer of S100β- or myelin oligodendrocyte glycoprotein (MOG)–specific T cells causes intense inflammatory response in the central nervous system (CNS) with minimal disease. However, in Dark Agouti rats, the pathogenicity of MOG-specific T cells resembles the one of MBP-specific T cells in the Lewis rat. Using retrovirally transduced green fluorescent T cells, we now report that differential disease activity reflects different levels of autoreactive effector T cell activation in their target tissue. Irrespective of their pathogenicity, the migratory activity, gene expression patterns, and immigration of green fluorescent protein+ T cells into the CNS were similar. However, exclusively highly pathogenic T cells were significantly reactivated within the CNS. Without local effector T cell activation, production of monocyte chemoattractants was insufficient to initiate and propagate a full inflammatory response. Low-level reactivation of weakly pathogenic T cells was not due to anergy because these cells could be activated by specific antigen in situ as well as after isolation ex vivo.


Sign in / Sign up

Export Citation Format

Share Document