scholarly journals Differential T Cell Function and Fate in Lymph Node and Nonlymphoid Tissues

2002 ◽  
Vol 195 (3) ◽  
pp. 317-326 ◽  
Author(s):  
Nicola L. Harris ◽  
Victoria Watt ◽  
Franca Ronchese ◽  
Graham Le Gros

The functions and fate of antigen-experienced T cells isolated from lymph node or nonlymphoid tissues were analyzed in a system involving adoptive transfer of in vitro–activated T cells into mice. Activated T cells present in the lymph nodes could be stimulated by antigen to divide, produce effector cytokines, and migrate to peripheral tissues. By contrast, activated T cells that had migrated into nonlymphoid tissues (lung and airway) produced substantial effector cytokines upon antigen challenge, but were completely unable to divide or migrate back to the lymph nodes. Therefore, activated T cells can undergo clonal expansion in the lymph node, but are recruited and retained as nondividing cells in nonlymphoid tissues. These distinct regulatory events in lymph node and nonlymphoid tissues reveal simple key mechanisms for both inducing and limiting T cell immunity.

2005 ◽  
Vol 73 (9) ◽  
pp. 5782-5788 ◽  
Author(s):  
Kyle I. Happel ◽  
Euan A. Lockhart ◽  
Carol M. Mason ◽  
Elizabeth Porretta ◽  
Elizabeth Keoshkerian ◽  
...  

ABSTRACT Interleukin-23 (IL-23) is a heterodimeric cytokine that shares IL-12 p40 but contains a unique p19 subunit similar to IL-12 p35. Previous studies indicate a greater importance for intact IL-12/23 p40 expression than IL-12 p35 for immunity against Mycobacterium tuberculosis, suggesting a role for IL-23 in host defense. The effects of IL-23 on the outcome of pulmonary infection with M. tuberculosis have not been described. Here, we show that local delivery of replication-defective adenovirus vectors encoding IL-23 (AdIL-23) greatly stimulated expression of both gamma interferon (IFN-γ) and IL-17 in lung tissues of otherwise normal mice. When given 72 h prior to infection with M. tuberculosis, AdIL-23 significantly reduced the bacterial burden at 14, 21, and 28 days. Markedly lower levels of lung inflammation were observed at 28 days than in control mice pretreated with control adenovirus (AdNull) or vehicle controls. AdIL-23 pretreatment resulted in increased numbers of CD4+ CD25+ activated T cells in lungs and draining lymph nodes compared to control groups and more CD4+ T cells bearing surface memory markers in lung lymph nodes. IL-23 gene delivery also significantly enhanced host anti-mycobacterial T-cell responses, as shown by elevated levels of IFN-γ and IL-17 secreted in vitro following restimulation with M. tuberculosis purified protein derivative. Overall, our data show that transient IL-23 gene delivery in the lung is well tolerated, and they provide the initial demonstration that this factor controls mycobacterial growth while augmenting early pulmonary T-cell immunity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3715-3715 ◽  
Author(s):  
Stuart P. Weisberg ◽  
Mark Chang ◽  
Pawel Muranski ◽  
Donna Farber

Abstract BACKGROUND: Adoptive transfer of in vitro expanded autologous and allogeneic virus specific T (VST) cells has been successfully used to prevent and treat EBV viral reactivation in transplant patients and aggressive EBV-driven cancers such as post-transplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma, and extranodal NK/T-cell lymphoma. Due to the easy accessibility of peripheral blood, VST cell products are universally generated from circulating T cells. However, the T cells in circulation represent only a minor fraction of T cells in the body with most residing in tissue sites, particularly lymph nodes. Recent animal data suggest that unique T cell populations that sustain memory responses to chronic viral infections exclusively reside in lymph nodes. The efficacy of using lymph node-derived T cells for adoptive cellular therapy has not been reported. AIMS: To assess the feasibility of generating VST cells from human lymph nodes using our clinically-compatible strategy and to test the ability of T cells derived from peripheral lymph nodes to expand in response to EBV-derived viral antigens and display functionality compared to T cells derived from blood. METHODS: Human blood and lymphoid tissues were obtained from brain dead organ donors at the time of organ procurement for transplantation through an approved protocol with LiveOnNY. Human blood was also obtained from healthy volunteers through an IRB approved protocol. Donors were cancer free, EBV seropositive, and negative for hepatitis B, C and HIV. Lymph nodes were isolated in sterile fashion, enzymatically and mechanically digested to a single cell suspension. Overlapping 15 mer peptide pools (pepmixes) of EBV latency viral antigens EBNA1 and LMP1 (JPT, Berlin, Germany) were used for expansion and restimulation. T cells were isolated by fluorescence activated cell sorting and stimulated with peptide pulsed irradiated mononuclear cells from blood (healthy donors) or spleen (organ donors), followed by 14-day culture in IL-7 and 15 (10 ng/mL) with addition of IL-2 (20 IU/mL) starting on day +3. Expanded T cells were then rested overnight and restimulated with individual pepmixes for 6 hours followed by surface marker and intracellular cytokine staining to evaluate differentiation state and function. RESULTS: T cells from lymph node, blood and spleen displayed comparable levels of in vitro expansion (Fig. 1A). Compared to blood, there was increased EBNA1 reactive cell frequency (TNF-α/IFN-ꝩ positive) in the lymph node derived T cell cultures (Fig. 1B). VST cells were predominately CD8 from blood (56 ± 15%) and lymph node (86 ± 3.8%) but not spleen (24 ± 6.4%). One donor in this cohort displayed significant reactivity for LMP1. Both blood and lymph node derived VST cells were uniformly positive for granzyme B and the degranulation marker CD107a (Fig. 1C). Remarkably, the lymph node derived VST cells displayed markedly enhanced polyfunctionality with robust secretion of IL-2, as well as increased surface expression of the co-stimulatory molecule CD28 with 33±3.6% displaying strong co-expression of both molecules compared to 8.1±2.7% of those derived from blood (Fig. 1D). CONCLUSION: These results suggest that it is feasible to generate highly-reactive EBV-specific T cells from human lymph node tissue using the methodology compatible with good manufacturing practice (GMP). In contrast to VST cells derived from peripheral blood, increased expression of CD28 and IL-2 on lymph node derived EBV reactive cells may indicate a superior capacity to survive, expand in vivo and eradicate EBV-driven disease upon adoptive transfer. Figure 1. Characterization of lymph node derived EBV reactive T cells. A) Expanded T cells from Blood (BL), iliac lymph node (iLN), mesenteric lymph node (MLN), and spleen (Spl), were restimulated with EBNA1 or LMP1 peptides for 6 hours, followed by surface and intracellular cytokine stain and flow cytometry. (A) Shown are the live cell counts in each culture per 100,000 cells plated; (B) the frequencies of VST cells (TNF-α/IFN-ꝩ positive) in each culture and (C) the frequency of cytotoxic CD107a / Granzyme B (GZMB) positive cells within the VST cell population. (D) Representative flow cytometry data from matched samples of an organ donor is shown to the left of compiled data showing subsets of the EBNA1 reactive cells defined by CD28 and IL-2 expression. (mean ± SEM, n = 2-4). *P < 0.05 t-test with comparison to blood. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2034-2034
Author(s):  
Parvathi Ranganathan ◽  
Katiri Snyder ◽  
Nina Zizter ◽  
Hannah K. Choe ◽  
Robert A Baiocchi ◽  
...  

Abstract Introduction: Acute graft-versus-host disease (aGVHD), a T cell-mediated immunological disorder is the leading cause of non-relapse mortality in patients receiving allogeneic bone marrow transplants. Protein arginine methyltransferase 5 (PRMT5) catalyzes symmetric dimethylation (me2s) of arginine (R) residues on histones (primarily H3R8 and H3R4) and other proteins. PRMT5 is overexpressed in many leukemias and lymphomas, and epigenetic changes driven by PRMT5 lead to repression of tumor suppressors and promote growth and survival of cancer cells. Recently it was shown that T cells are sensitive to R-methylation and PRMT5 promotes activation of memory T helper cells. Here we investigate: 1) mechanisms by which PRMT5 regulates T cell function; and 2) PRMT5 inhibition as a therapeutic strategy for aGVHD. Materials and Methods: Splenic T cells were isolated from lethally irradiated B6D2F1 mice that received either T cell depleted bone marrow (TCD-BM) or TCD-BM with C57/BL6 (B6) allogeneic splenocytes on day 21 post-transplant. In vitro activation of B6 T cells was achieved with CD3/CD28 Dynabeads or co-culture with allogeneic BM-derived dendritic cells. PRMT5 expression (RT-PCR, western blot) and function (H3R8me2s western blot) were evaluated. PRT220, a novel inhibitor of PRMT5, was used to evaluate PRMT5 inhibition on T cell function in vitro and in vivo. We assessed T cell proliferation (Cell Trace Violet, Ki67), apoptosis (Annexin V), cytokine secretion (ELISA, flow cytometry), cell cycle (PI incorporation), and cell signaling (western blot). Lethally irradiated F1 recipients received TCD-BM only (10x106 cells) or TCD-BM + B6 splenocytes (20 x 106). Recipients of allogeneic splenocytes were treated with PRT220 (2mg/kg) or vehicle by oral gavage once weekly starting day 7 post-transplant. Mice were monitored for survival and clinical aGVHD scores. Results: PRMT5 expression and function is upregulated following T cell activation. Inhibition of PRMT5 reduces T cell proliferation and IFN-g secretion. PRMT5 inhibition in CD3/CD28 stimulated T cells results in disruption of multiple histone epigenetic marks, cell-cycle progression (via G1 arrest) and perturbation of ERK-MAPK signaling cascades. Finally, administration of PRT220 resulted in significantly prolonging the survival of allo-transplanted recipient mice (median survival, PRT220 vs. vehicle, 36.5 vs. 26 days, p=0.01). PRT220-treated recipients also exhibited significant lower aGVHD clinical (p<0.05), pathological scores (p<0.05) and lower serum TNF-a (p<0.05) and IFN-g (p<0.05) than vehicle-treated recipients. Conclusions: PRMT5 expression and function are upregulated in activated T cells. Inhibition of PRMT5 function using a novel and specific small-molecule inhibitor, PRT220, down-regulates T cells proliferative and effector response, induces cell-cycle arrest and perturbs signaling pathways. PRT220 shows potent biological activity in vivo by reducing aGVHD clinical severity and significantly prolonging survival in mouse models of aGVHD. Therefore, PRMT5 is a novel and druggable target for aGVHD. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 222 (9) ◽  
pp. 1540-1549
Author(s):  
Bruktawit A Goshu ◽  
Hui Chen ◽  
Maha Moussa ◽  
Jie Cheng ◽  
Marta Catalfamo

Abstract In chronic HIV infection, virus-specific cytotoxic CD8 T cells showed expression of checkpoint receptors and impaired function. Therefore, restoration of CD8 T-cell function is critical in cure strategies. Here, we show that in vitro blockade of programmed cell death ligand 1 (PD-L1) by an anti-PD-L1 antibody (avelumab) in combination with recombinant human interleukin-15 (rhIL-15) synergistically enhanced cytokine secretion by proliferating HIVGag-specific CD8 T cells. In addition, these CD8 T cells have a CXCR3+PD1−/low phenotype, suggesting a potential to traffic into peripheral tissues. In vitro, proliferating CD8 T cells express PD-L1 suggesting that anti-PD-L1 treatment also targets virus-specific CD8 T cells. Together, these data indicate that rhIL-15/avelumab combination therapy could be a useful strategy to enhance CD8 T-cell function in cure strategies.


2005 ◽  
Vol 201 (11) ◽  
pp. 1793-1803 ◽  
Author(s):  
Claudia R. Ruprecht ◽  
Marco Gattorno ◽  
Francesca Ferlito ◽  
Andrea Gregorio ◽  
Alberto Martini ◽  
...  

A better understanding of the role of CD4+CD25+ regulatory T cells in disease pathogenesis should follow from the discovery of reliable markers capable of discriminating regulatory from activated T cells. We report that the CD4+CD25+ population in synovial fluid of juvenile idiopathic arthritis (JIA) patients comprises both regulatory and effector T cells that can be distinguished by expression of CD27. CD4+CD25+CD27+ cells expressed high amounts of FoxP3 (43% of them being FoxP3+), did not produce interleukin (IL)-2, interferon-γ, or tumor necrosis factor, and suppressed T cell proliferation in vitro, being, on a per cell basis, fourfold more potent than the corresponding peripheral blood population. In contrast, CD4+CD25+CD27− cells expressed low amounts of FoxP3, produced effector cytokines and did not suppress T cell proliferation. After in vitro activation and expansion, regulatory but not conventional T cells maintained high expression of CD27. IL-7 and IL-15 were found to be present in synovial fluid of JIA patients and, when added in vitro, abrogated the suppressive activity of regulatory T cells. Together, these results demonstrate that, when used in conjunction with CD25, CD27 is a useful marker to distinguish regulatory from effector T cells in inflamed tissues and suggest that at these sites IL-7 and IL-15 may interfere with regulatory T cell function.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A189-A189
Author(s):  
Shannon Oda ◽  
Kristin Anderson ◽  
Philip Greenberg ◽  
Nicolas Garcia ◽  
Pranali Ravikumar ◽  
...  

BackgroundAdoptive cell therapy (ACT) with genetically-modified T cells has shown impressive results against some hematologic cancers, but limited efficacy against tumors with restrictive tumor microenvironments (TMEs). FasL is a particular obstacle for ACT;1 it is expressed in many tumors and TMEs,1 including AML,2 ovarian3 and pancreatic cancers,4 and upregulated on activated T cells, where it can mediate activation-induced cell death (AICD).5MethodsWe engineered T cells to boost function with novel immunomodulatory fusion proteins (IFPs) that combine an inhibitory ectodomain with a costimulatory endodomain. Like current checkpoint-blocking therapies, IFPs can abrogate an inhibitory signal, but also provide an often absent costimulatory signal. Additionally, IFP-driven signals are delivered only to the T cells concurrently engineered to be tumor-specific, thereby avoiding systemic T cell activation. For FasL-expressing TMEs, we developed an IFP that replaces the Fas intracellular tail with costimulatory 4-1BB. We tested the the Fas-4-1BB IFP in primary human T cells and in immunocompetent murine models of leukemia and pancreatic cancer.ResultsFas-4-1BB IFP expression enhanced primary human T cell function and enhanced lysis of Panc1 pancreatic tumor cells in vitro. Fas-4-1BB IFP-engineered murine T cells exhibited increased pro-survival signaling, proliferation, antitumor function and altered metabolism in vitro. Notably, the Fas ectodomain is trimeric5 and the 4-1BB intracellular domain requires trimerization to signal.6 In contrast, the CD28 domain is dimeric and did not enhance function when paired with 4-1BB.In vivo, Fas-4-1BB increased T cell persistence and function, and Fas-4-1BB T cell ACT significantly improved survival in a murine AML model. When delivered with a mesothelin-specific TCR, Fas-4-1BB T cells prolonged survival in the autochthonous KPC pancreatic cancer model, increasing median survival to 65 from 37 days (with TCR-only, **P=0.0042). Single-cell RNA sequencing revealed differences in the endogenous tumor-infiltrating immune cells, included changes in cell frequency and programming.ConclusionsWe developed an engineering approach to enhance the in vivo persistence and antitumor efficacy of transferred T cells. Our targeted, two-hit strategy uses a single fusion protein to overcome a death signal prevalent in the TME of many cancers and on activated T cells, and to provide a pro-survival costimulatory signal to T cells. Our results suggest that this fusion protein can increase T cell function when combined with murine or human TCRs, and can significantly improve therapeutic efficacy in liquid and solid tumors, supporting clinical translation.ReferencesYamamoto, T.N., et al., T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J Clin Invest 2019.Contini P, et al., In vivo apoptosis of CD8(+) lymphocytes in acute myeloid leukemia patients: involvement of soluble HLA-I and Fas ligand. Leukemia 2007;21(2):p. 253–60.Motz GT, et al., Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 2014;20(6):p. 607–15.Kornmann M, et al., Fas and Fas-ligand expression in human pancreatic cancer. Ann Surg 2000. 231(3): p. 368–79.Villa-Morales M and J Fernandez-Piqueras, Targeting the Fas/FasL signaling pathway in cancer therapy. Expert Opin Ther Targets 2012;16(1):p. 85–101.Wyzgol, A., et al., Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J Immunol 2009;183(3):p. 1851–61.


1999 ◽  
Vol 190 (8) ◽  
pp. 1183-1188 ◽  
Author(s):  
Galya Vassileva ◽  
Hortensia Soto ◽  
Albert Zlotnik ◽  
Hideki Nakano ◽  
Terutaka Kakiuchi ◽  
...  

6Ckine is an unusual chemokine capable of attracting naive T lymphocytes in vitro. It has been recently reported that lack of 6Ckine expression in lymphoid organs is a prominent characteristic of mice homozygous for the paucity of lymph node T cell (plt) mutation. These mice show reduced numbers of T cells in lymph nodes, Peyer's patches, and the white pulp of the spleen. The genetic reason for the lack of 6Ckine expression in the plt mouse, however, has remained unknown. Here we demonstrate that mouse 6Ckine is encoded by two genes, one of which is expressed in lymphoid organs and is deleted in plt mice. A second 6Ckine gene is intact and expressed in the plt mouse.


Parasitology ◽  
1997 ◽  
Vol 115 (1) ◽  
pp. 91-96 ◽  
Author(s):  
F. GANAPAMO ◽  
B. RUTTI ◽  
M. BROSSARD

BALB/c mice infested with larvae or nymphs of Ixodes ricinus develop in their lymph nodes a T cell-specific immune response triggered by salivary gland soluble antigens (SGA). SGA are apparently conserved in the 3 biological stages of I. ricinus ticks and are species specific. SGA derived from partially fed females I. ricinus stimulate lymph node T cells from mice infested with I. ricinus larvae or nymphs. In contrast, lymph node cells from mice infested with Amblyomma hebraeum nymphs do not respond. A chromatographic fraction enriched with a 65 kDa protein (IrSG65) isolated from salivary glands of I. ricinus partially fed females induces in vitro a specific T cell proliferation of lymph node cells from mice infested with I. ricinus nymphs. The depletion of CD4+ T cells drastically reduces the ability of lymphocytes from infested mice to proliferate after IrSG65 stimulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Cao ◽  
Huihui Liu ◽  
Yujun Dong ◽  
Wei Liu ◽  
Zhengyu Yu ◽  
...  

Abstract Background Idiopathic pneumonia syndrome (IPS) is a non-infectious fatal complication characterized by a massive infiltration of leukocytes in lungs and diffuse pulmonary injury after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Conventional immunosuppressive treatments for IPS have poor therapeutic effects. Safe and effective treatments are not yet available and under explorations. Our previous study demonstrated that mesenchymal stem cells (MSCs) can alleviate IPS, but the mechanisms remain unclear. Methods Co-cultured pre-activated T cells and MSCs in vitro to observe the changes in the CCR2-CCL2 axis. By establishing an IPS mouse model and administering MSCs to further verify the results of in vitro experiments. Results Co-culture of pre-activated T cells with MSCs in vitro modulated the CCR2-CCL2 axis, resulting in quiescent T cells and polarization toward CCR2+CD4+ T cell subsets. Blocking CCR2-CCL2 interaction abolished the immunoregulatory effect of MSCs, leading to re-activation of T cells and partial reversion of polarizing toward CCR2+CD4+ T cells. In IPS mouse model, application of MSCs prolonged the survival and reduced the pathological damage and T cell infiltration into lung tissue. Activation of CCR2-CCL2 axis and production of CCR2+CD4+ T cells were observed in the lungs treated with MSCs. The prophylactic effect of MSCs on IPS was significantly attenuated by the administration of CCR2 or CCL2 antagonist in MSC-treated mice. Conclusions We demonstrated an important role of CCR2-CCL2 axis in modulating T cell function which is one of the mechanisms of the prophylactic effect of MSCs on IPS.


2017 ◽  
Author(s):  
Tobias X. Dong ◽  
Milton L. Greenberg ◽  
Sabrina Leverrier ◽  
Ying Yu ◽  
Ian Parker ◽  
...  

AbstractCa2+ signaling through the store-operated Ca2+ channel, Orai1, is crucial for T cell function, but a role in regulating T cell motility in lymph nodes has not been previously reported. Tracking human T cells in immunodeficient mouse lymph nodes and in microfabricated PDMS channels, we show that inhibition of Orai1 channel activity with a dominant-negative Orai1-E106A construct increases average T cell velocities by reducing the frequency of pauses in motile T cells. Orai1-dependent motility arrest occurs spontaneously during confined motility in vitro, even in the absence of extrinsic cell contacts or antigen recognition. Utilizing a novel ratiometric genetically encoded cytosolic Ca2+ indicator, Salsa6f, we show these spontaneous pauses during T cell motility in vitro coincide with episodes of spontaneous cytosolic Ca2+ signaling. Our results demonstrate that Orai1, activated in a cell-intrinsic manner, regulates T cell motility patterns that accompany immune surveillance.


Sign in / Sign up

Export Citation Format

Share Document