scholarly journals E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment

2006 ◽  
Vol 203 (5) ◽  
pp. 1329-1342 ◽  
Author(s):  
Tomokatsu Ikawa ◽  
Hiroshi Kawamoto ◽  
Ananda W. Goldrath ◽  
Cornelis Murre

The helix-loop-helix protein, E47, is essential for both B- and T-lineage development. Here we demonstrate that in vitro E47 and Notch signaling act in concert to promote T cell development from fetal hematopoieitic progenitors and to restrain development into the natural killer and myeloid cell lineages. The expression of an ensemble of genes associated with Notch signaling is activated by E47, and additionally, Notch signaling and E47 act in parallel pathways to induce a T lineage–specific program of gene expression. Enforced expression of the intracellular domain of Notch rescues the developmental arrest at the T cell commitment stage in E2A-deficient fetal thymocytes. Finally, we demonstrate that regulation of Hes1 expression by Notch signaling and E47 is strikingly similar to that observed during Drosophila melanogaster sensory development. Based on these observations, we propose that in developing fetal thymocytes E47 acts to induce the expression of an ensemble of genes involved in Notch signaling, and that subsequently E47 acts in parallel with Notch signaling to promote T-lineage maturation.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 765-765
Author(s):  
Keisuke Aoyama ◽  
Barbara Varnum-Finney ◽  
Randall T. Moon ◽  
Irwin D. Bernstein

Abstract The Wnt and Notch signaling pathways have critical roles in cell fate decisions. However, the interaction of these pathways is poorly understood. Using highly purified Wnt3a and immobilized Notch ligand, Delta1ext-IgG, we investigated the mechanisms involved in Wnt and Notch signaling interactions during hematopoietic stem cell differentiation. When CD34+CD38- cord blood stem cells were cultured for 2 to 3 weeks with five growth factors (SCF 300ng/ml, Flt-3L 300ng/ml, TPO 100ng/ml, IL-6 100ng/ml, and IL-3 10ng/ml), most precursor cells lost CD34 expression and differentiated into mature cells, most of which were monocytes. However, as we previously reported, when cells were cultured with Delta1ext-IgG, we found an increased percentage of lymphoid progenitors (CD34+CD7+) and more mature lymphoid precursors (CD34-CD7+) in the cell population. The addition of purified Wnt3a (100ng/ml) alone without Delta1ext-IgG did not significantly change the percentage of CD7+ cells (1% vs. 3%). However, when both Wnt3a and Delta1ext-IgG were added, we saw an increased percentage of CD7+ cells (11% with Delta1ext-IgG alone to 27% with both) (Fig. 1A). Wnt3a also enhanced gene expression of CD3ε and preTα induced by Delta1ext-IgG. These results suggest that Wnt3a enhances the effect of Notch signaling on T-cell lineage development. To test the role of endogenous Wnt signaling, we added Dickkopf1, an inhibitor of Wnt signaling. When CD34+CD38- cells were cultured with Dickkopf1 (300ng/ml) alone for a 2 week, the percentage and number of CD56+ NK cells was unaffected. However, when cultured with Dickkopf1 and Delta1ext-IgG, the percentage and number of CD56+ NK precursor cells were increased (2% with Delta1ext-IgG alone vs. 17% with Dickkopf1 and Delta1ext-IgG; 0.2 ×105 vs. 1.5×105, p<0.01) (Fig. 1B). This result shows that decreased endogenous Wnt signaling enhances the generation of NK cells in the presence of Notch signaling. To address whether Wnt signaling affects Notch signaling by modulating protein levels, we assessed the amount of activated Notch1 intracellular domain with or without Wnt 3a by Western blot (Fig. 2A). After stimulation for 24 h, Wnt3a increased the amount of activated Notch1 intracellular domain induced by Delta1ext-IgG. Wnt3a also enhanced the expression of a primary target gene of Notch signaling, Hes1, determined by quantitative RT-PCR (Fig. 2B). In contrast, Dickkopf1 reduced Delta1ext-IgG-induced Hes1 expression. These results suggest that Wnt signaling directly modulates Notch signaling. Thus, these studies suggest that Wnt signaling is a key factor in cell fate determination at the point of NK/T cell commitment that is mediated via an interaction with Notch signaling. These studies also suggest that Wnt directly regulates Notch signaling by modulating protein turnover. Fig. 1, Fig. 2 Fig. 1, Fig. 2.


2004 ◽  
Vol 200 (4) ◽  
pp. 469-479 ◽  
Author(s):  
Thomas M. Schmitt ◽  
Maria Ciofani ◽  
Howard T. Petrie ◽  
Juan Carlos Zúñiga-Pflücker

Notch signaling has been shown to play a pivotal role in inducing T lineage commitment. However, T cell progenitors are known to retain other lineage potential long after the first point at which Notch signaling is required. Thus, additional requirements for Notch signals and the timing of these events relative to intrathymic differentiation remain unknown. Here, we address this issue by culturing subsets of CD4 CD8 double negative (DN) thymocytes on control stromal cells or stromal cells expressing Delta-like 1 (Dll1). All DN subsets were found to require Notch signals to differentiate into CD4+ CD8+ T cells. Using clonal analyses, we show that CD44+ CD25+ (DN2) cells, which appeared committed to the T cell lineage when cultured on Dll1-expressing stromal cells, nonetheless gave rise to natural killer cells with a progenitor frequency similar to that of CD44+ CD25− (DN1) thymocytes when Notch signaling was absent. These data, together with the observation that Dll1 is expressed on stromal cells throughout the thymic cortex, indicates that Notch receptor–ligand interactions are necessary for induction and maintenance of T cell lineage specification at both the DN1 and DN2 stages of T cell development, suggesting that the Notch-induced repression of the B cell fate is temporally separate from Notch-induced commitment to the T lineage.


2007 ◽  
Vol 204 (2) ◽  
pp. 331-343 ◽  
Author(s):  
Valerie Besseyrias ◽  
Emma Fiorini ◽  
Lothar J. Strobl ◽  
Ursula Zimber-Strobl ◽  
Alexis Dumortier ◽  
...  

Notch1 (N1) receptor signaling is essential and sufficient for T cell development, and recently developed in vitro culture systems point to members of the Delta family as being the physiological N1 ligands. We explored the ability of Delta1 (DL1) and DL4 to induce T cell lineage commitment and/or maturation in vitro and in vivo from bone marrow (BM) precursors conditionally gene targeted for N1 and/or N2. In vitro DL1 can trigger T cell lineage commitment via either N1 or N2. N1- or N2-mediated T cell lineage commitment can also occur in the spleen after short-term BM transplantation. However, N2–DL1–mediated signaling does not allow further T cell maturation beyond the CD25+ stage due to a lack of T cell receptor β expression. In contrast to DL1, DL4 induces and supports T cell commitment and maturation in vitro and in vivo exclusively via specific interaction with N1. Moreover, comparative binding studies show preferential interaction of DL4 with N1, whereas binding of DL1 to N1 is weak. Interestingly, preferential N1–DL4 binding reflects reduced dependence of this interaction on Lunatic fringe, a glycosyl transferase that generally enhances the avidity of Notch receptors for Delta ligands. Collectively, our results establish a hierarchy of Notch–Delta interactions in which N1–DL4 exhibits the greatest capacity to induce and support T cell development.


2005 ◽  
Vol 25 (4) ◽  
pp. 1437-1445 ◽  
Author(s):  
Sébastien Storck ◽  
Frédéric Delbos ◽  
Nicolas Stadler ◽  
Catherine Thirion-Delalande ◽  
Florence Bernex ◽  
...  

ABSTRACT The Notch signaling pathway controls several cell fate decisions during lymphocyte development, from T-cell lineage commitment to the peripheral differentiation of B and T lymphocytes. Deltex-1 is a RING finger ubiquitin ligase which is conserved from Drosophila to humans and has been proposed to be a regulator of Notch signaling. Its pattern of lymphoid expression as well as gain-of-function experiments suggest that Deltex-1 regulates both B-cell lineage and splenic marginal-zone B-cell commitment. Deltex-1 was also found to be highly expressed in germinal-center B cells. To investigate the physiological function of Deltex-1, we generated a mouse strain lacking the Deltex-1 RING finger domain, which is essential for its ubiquitin ligase activity. Deltex-1Δ/Δ mice were viable and fertile. A detailed histological analysis did not reveal any defects in major organs. T- and B-cell development was normal, as were humoral responses against T-dependent and T-independent antigens. These data indicate that the Deltex-1 ubiquitin ligase activity is dispensable for mouse development and immune function. Possible compensatory mechanisms, in particular those from a fourth Deltex gene identified during the course of this study, are also discussed.


Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1850-1860 ◽  
Author(s):  
TA Moore ◽  
A Zlotnik

The earliest steps of intrathymic differentiation recently have been elucidated. It has been reported that both CD4lo (CD44+ CD25- c-kit+ CD3- CD4lo CD8-) and pro-T cells (CD44+ CD25+ c-kit+ CD3- CD4- CD8-, representing the next step in maturation) exhibit germline T-cell receptor beta and gamma loci, suggesting that neither population is exclusively committed to the T-cell lineage. Several groups have shown that CD4lo cells retain the capacity to generate multiple lymphoid lineages in vivo; however, the lineage commitment status of pro-T cells is unknown. To determine when T-cell lineage commitment occurs, we examined the ability of sorted CD4lo and pro-T cells to generate lymphoid lineage cells in vivo or in fetal thymic organ cultures (FTOCs). When intravenously injected into scid mice, CD4lo cells generated both T and B cells, whereas the progeny of pro-T cells contained T cells exclusively. Fetal thymic organ cultures repopulated with CD4lo cells contained both T and natural killer (NK) cells, whereas cultures repopulated with pro-T cells contained T cells almost exclusively. These observations strongly suggest that T-cell lineage commitment occurs during the transition of CD4lo to pro-T cells. Because it is likely that the thymic microenvironment plays a critical role in T-cell commitment, we compared the responses of CD4lo and pro-T cells to various cytokine combinations in vitro, as well as the ability of the cultured cells to repopulate organ cultures. Cytokine combinations that maintained T-cell repopulation potential for both CD4lo and pro-T cells were found. CD4lo cells proliferated best in response to the combination containing interleukin-1 (IL-1), IL-3, IL- 6, IL-7, and stem cell factor (SCF). Unlike CD4lo cells, pro-T cells were much more dependent upon IL-7 for proliferation and FTOC repopulation. However, combinations of cytokines lacking IL-7 were found that maintained the T-cell repopulating potential of pro-T cells, suggesting that, whereas this cytokine is clearly very important for normal pro-T cell function, it is not an absolute necessity during early T-cell expansion and differentiation.


2020 ◽  
Author(s):  
Nathalia Azevedo ◽  
Elisa Bertesago ◽  
Ismail Ismailoglu ◽  
Michael Kyba ◽  
Michihiro Kobayashi ◽  
...  

AbstractThe in vitro generation from pluripotent stem cells (PSCs) of different blood cell types, in particular those that are not replenished by hematopoietic stem cells (HSCs) like fetal-derived tissue-resident macrophages and innate-like lymphocytes, is of a particular interest. In order to succeed in this endeavor, a thorough understanding of the pathway interplay promoting lineage specification for the different blood cell types is needed. Notch signaling is essential for the HSC generation and their derivatives, but its requirement for tissue-resident immune cells is unknown. Using mouse embryonic stem cells (mESCs) to recapitulate murine embryonic development, we have studied the requirement for Notch signaling during the earliest B-lymphopoiesis and found that Rbpj-deficient mESCs are able to generate B-1 cells. Their Notch-independence was confirmed in ex vivo experiments using Rbpj-deficient embryos. In addition, we found that upregulation of Notch signaling was needed for the emergence of B-2 lymphoid cells. Taken together, these findings indicate that control of Notch signaling dosage is critical for the different B-cell lineage specification and provides pivotal information for their in vitro generation from PSCs for therapeutic applications.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2179-2189 ◽  
Author(s):  
M. Krause ◽  
M. Park ◽  
J.M. Zhang ◽  
J. Yuan ◽  
B. Harfe ◽  
...  

The E proteins of mammals, and the related Daughterless (DA) protein of Drosophila, are ubiquitously expressed helix-loop-helix (HLH) transcription factors that play a role in many developmental processes. We report here the characterization of a related C. elegans protein, CeE/DA, which has a dynamic and restricted distribution during development. CeE/DA is present embryonically in neuronal precursors, some of which are marked by promoter activity of a newly described Achaete-scute-like gene hlh-3. In contrast, we have been unable to detect CeE/DA in CeMyoD-positive striated muscle cells. In vitro gel mobility shift analysis detects dimerization of CeE/DA with HLH-3 while efficient interaction of CeE/DA with CeMyoD is not seen. These studies suggest multiple roles for CeE/DA in C. elegans development and provide evidence that both common and alternative strategies have evolved for the use of related HLH proteins in controlling cell fates in different species.


1997 ◽  
Vol 186 (9) ◽  
pp. 1597-1602 ◽  
Author(s):  
Mirjam H.M. Heemskerk ◽  
Bianca Blom ◽  
Garry Nolan ◽  
Alexander P.A. Stegmann ◽  
Arjen Q. Bakker ◽  
...  

Bipotential T/natural killer (NK) progenitor cells are present in the human thymus. Despite their bipotential capacity, these progenitors develop predominantly to T cells in the thymus. The mechanisms controlling this developmental choice are unknown. Here we present evidence that a member(s) of the family of basic helix loop helix (bHLH) transcription factors determines lineage specification of NK/T cell progenitors. The natural dominant negative HLH factor Id3, which blocks transcriptional activity of a number of known bHLH factors, was expressed in CD34+ progenitor cells by retrovirus-mediated gene transfer. Constitutive expression of Id3 completely blocks development of CD34+ cells into T cells in a fetal thymic organ culture (FTOC). In contrast, development into NK cells in an FTOC is enhanced. Thus, the activity of a bHLH transcription factor is necessary for T lineage differentiation of bipotential precursors, in the absence of which a default pathway leading to NK cell development is chosen. Our results identify a molecular switch for lineage specification in early lymphoid precursors of humans.


Author(s):  
Caio César Barbosa Bomfim ◽  
Eduardo Pinheiro Amaral ◽  
Igor Santiago-Carvalho ◽  
Gislane Almeida Santos ◽  
Érika Machado Salles ◽  
...  

Abstract Background The role of myeloid-derived suppressor cells (MDSCs) in severe tuberculosis patients who suffer from uncontrolled pulmonary inflammation caused by hypervirulent mycobacterial infection remains unclear. Methods This issue was addressed using C57BL/6 mice infected with highly virulent Mycobacterium bovis strain MP287/03. Results CD11b +GR1 int population increased in the bone marrow, blood and lungs during advanced disease. Pulmonary CD11b +GR1 int (Ly6G intLy6C int) cells showed granularity similar to neutrophils and expressed immature myeloid cell markers. These immature neutrophils harbored intracellular bacilli and were preferentially located in the alveoli. T cell suppression occurred concomitantly with CD11b +GR1 int cell accumulation in the lungs. Furthermore, lung and bone-marrow GR1 + cells suppressed both T cell proliferation and IFN-γ production in vitro. Anti-GR1 therapy given when MDSCs infiltrated the lungs prevented expansion and fusion of primary pulmonary lesions and the development of intragranulomatous caseous necrosis, along with increased mouse survival and partial recovery of T cell function. Lung bacterial load was reduced by anti-GR1 treatment, but mycobacteria released from the depleted cells proliferated extracellularly in the alveoli, forming cords and clumps. Conclusions Granulocytic MDSCs massively infiltrate the lungs during infection with hypervirulent mycobacteria, promoting bacterial growth and the development of inflammatory and necrotic lesions, and are promising targets for host-directed therapies.


Blood ◽  
1981 ◽  
Vol 58 (5) ◽  
pp. 911-915 ◽  
Author(s):  
F Triebel ◽  
WA Robinson ◽  
AR Hayward ◽  
PG Goube de Laforest

Abstract The existence and characteristics of bone marrow T-cell progenitors have not yet been established in man. Several pieces of evidence such as the reconstitution of certain immunodeficiencies by bone marrow graft suggest that T-cell precursors are present in the bone marrow. We report the growth of T-cell colonies from bone marrow populations using PHA-stimulated lymphocyte-conditioned medium containing T-cell growth factor (TCGF). Rosetting experiments and complement-dependent cytotoxicity assays with monoclonal antibodies indicate that the bone marrow T colony-forming cells (T-CFC) are E- OKT 3- and la+, i.e., immature progenitors. The colonies derived from these cells have the phenotype of mature T cells: E + OKT 3 + la- with either helper (OKT 4+) and suppressor (OKT 8 +) antigens. These results suggest that a thymic microenvironment may not be necessary for the in vitro proliferation and differentiation of the T-cell lineage in adult humans. These methodologies may permit direct investigation of early phenomena concerning the T-cell lineage, such as the acquisition of self-tolerance, the formation of a repertoire of specificities, and the HLA restriction phenomena that we believe takes place before the thymic maturation.


Sign in / Sign up

Export Citation Format

Share Document