scholarly journals Interleukin-23 drives innate and T cell–mediated intestinal inflammation

2006 ◽  
Vol 203 (11) ◽  
pp. 2473-2483 ◽  
Author(s):  
Sophie Hue ◽  
Philip Ahern ◽  
Sofia Buonocore ◽  
Marika C. Kullberg ◽  
Daniel J. Cua ◽  
...  

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract involving aberrant activation of innate and adaptive immune responses. We have used two complementary models of IBD to examine the roles of interleukin (IL)-12 family cytokines in bacterially induced intestinal inflammation. Our results clearly show that IL-23, but not IL-12, is essential for the induction of chronic intestinal inflammation mediated by innate or adaptive immune mechanisms. Depletion of IL-23 was associated with decreased proinflammatory responses in the intestine but had little impact on systemic T cell inflammatory responses. These results newly identify IL-23 as a driver of innate immune pathology in the intestine and suggest that selective targeting of IL-23 represents an attractive therapeutic approach in human IBD.

2011 ◽  
Vol 106 (11) ◽  
pp. 814-819 ◽  
Author(s):  
Godfrey Getz ◽  
Paul VanderLaan ◽  
Catherine Reardon

SummaryCells of both the innate and adaptive immune system participate in the development of atherosclerosis, a chronic inflammatory disorder of medium and large arteries. Natural killer T (NKT) cells express surface markers characteristic of natural killer cells and conventional T cells and bridge the innate and adaptive immune systems. The development and activation of NKT cells is dependent upon CD1d, a MHC-class I-type molecule that presents lipids, especially glycolipids to the T cell receptors on NKT cells. There are two classes of NKT cells; invariant NKT cells that express a semi-invariant T cell receptor and variant NKT cells. This review summarises studies in murine models in which the effect of the activation, overexpression or deletion of NKT cells or only invariant NKT cells on atherosclerosis has been examined.


2012 ◽  
Vol 209 (9) ◽  
pp. 1595-1609 ◽  
Author(s):  
Margherita Coccia ◽  
Oliver J. Harrison ◽  
Chris Schiering ◽  
Mark J. Asquith ◽  
Burkhard Becher ◽  
...  

Although very high levels of interleukin (IL)-1β are present in the intestines of patients suffering from inflammatory bowel diseases (IBD), little is known about the contribution of IL-1β to intestinal pathology. Here, we used two complementary models of chronic intestinal inflammation to address the role of IL-1β in driving innate and adaptive pathology in the intestine. We show that IL-1β promotes innate immune pathology in Helicobacter hepaticus–triggered intestinal inflammation by augmenting the recruitment of granulocytes and the accumulation and activation of innate lymphoid cells (ILCs). Using a T cell transfer colitis model, we demonstrate a key role for T cell–specific IL-1 receptor (IL-1R) signals in the accumulation and survival of pathogenic CD4+ T cells in the colon. Furthermore, we show that IL-1β promotes Th17 responses from CD4+ T cells and ILCs in the intestine, and we describe synergistic interactions between IL-1β and IL-23 signals that sustain innate and adaptive inflammatory responses in the gut. These data identify multiple mechanisms through which IL-1β promotes intestinal pathology and suggest that targeting IL-1β may represent a useful therapeutic approach in IBD.


2000 ◽  
Vol 278 (5) ◽  
pp. G665-G669 ◽  
Author(s):  
Theresa T. Pizarro ◽  
Kristen O. Arseneau ◽  
Fabio Cominelli

Crohn's Disease (CD) affects more than 500,000 individuals in the United States and represents the second most common chronic inflammatory disorder after rheumatoid arthritis. Although major advances have been made in defining the basic mechanisms underlying chronic intestinal inflammation, the precise etiopathogenesis of CD remains unknown. We have recently characterized two novel mouse models of enteritis that express a CD-like phenotype, namely the TNF ΔARE model of tumor necrosis factor (TNF) overexpression and the SAMP1/Yit model of spontaneous ileitis. The unique feature of these models is that they closely resemble CD for location and histopathology. These genetically manipulated new models of intestinal inflammation offer a powerful tool to investigate potential causes of human disease and may allow the development of novel disease-modifying therapeutic modalities for the treatment of CD.


2006 ◽  
Vol 203 (11) ◽  
pp. 2485-2494 ◽  
Author(s):  
Marika C. Kullberg ◽  
Dragana Jankovic ◽  
Carl G. Feng ◽  
Sophie Hue ◽  
Peter L. Gorelick ◽  
...  

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that is caused in part by a dysregulated immune response to the intestinal flora. The common interleukin (IL)-12/IL-23p40 subunit is thought to be critical for the pathogenesis of IBD. We have analyzed the role of IL-12 versus IL-23 in two models of Helicobacter hepaticus–triggered T cell–dependent colitis, one involving anti–IL-10R monoclonal antibody treatment of infected T cell–sufficient hosts, and the other involving CD4+ T cell transfer into infected Rag−/− recipients. Our data demonstrate that IL-23 and not IL-12 is essential for the development of maximal intestinal disease. Although IL-23 has been implicated in the differentiation of IL-17–producing CD4+ T cells that alone are sufficient to induce autoimmune tissue reactivity, our results instead support a model in which IL-23 drives both interferon γ and IL-17 responses that together synergize to trigger severe intestinal inflammation.


2001 ◽  
Vol 120 (5) ◽  
pp. A517-A517
Author(s):  
A MIZOGUCHI ◽  
E MIZOGUCHI ◽  
Y DEJONG ◽  
H TAKEDATSU ◽  
F PREFFER ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Marta Vuerich ◽  
Na Wang ◽  
Ahmadreza Kalbasi ◽  
Jonathon J. Graham ◽  
Maria Serena Longhi

Autoimmune hepatitis (AIH) is a chronic inflammatory disorder characterized by hypergammaglobulinemia, presence of serum autoantibodies and histological features of interface hepatitis. AIH therapeutic management still relies on the administration of corticosteroids, azathioprine and other immunosuppressants like calcineurin inhibitors and mycophenolate mofetil. Withdrawal of immunosuppression often results in disease relapse, and, in some cases, therapy is ineffective or associated with serious side effects. Understanding the mechanisms underlying AIH pathogenesis is therefore of paramount importance to develop more effective and well tolerated agents capable of restoring immunotolerance to liver autoantigens. Imbalance between effector and regulatory cells permits liver damage perpetuation and progression in AIH. Impaired expression and regulation of CD39, an ectoenzyme key to immunotolerance maintenance, have been reported in Tregs and effector Th17-cells derived from AIH patients. Interference with these altered immunoregulatory pathways may open new therapeutic avenues that, in addition to limiting aberrant inflammatory responses, would also reconstitute immune homeostasis. In this review, we highlight the most recent findings in AIH immunopathogenesis and discuss how these could inform and direct the development of novel therapeutic tools.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 110 ◽  
Author(s):  
Irma Tindemans ◽  
Maria E. Joosse ◽  
Janneke N. Samsom

Infiltration of the lamina propria by inflammatory CD4+ T-cell populations is a key characteristic of chronic intestinal inflammation. Memory-phenotype CD4+ T-cell frequencies are increased in inflamed intestinal tissue of IBD patients compared to tissue of healthy controls and are associated with disease flares and a more complicated disease course. Therefore, a tightly controlled balance between regulatory and inflammatory CD4+ T-cell populations is crucial to prevent uncontrolled CD4+ T-cell responses and subsequent intestinal tissue damage. While at steady state, T-cells display mainly a regulatory phenotype, increased in Th1, Th2, Th9, Th17, and Th17.1 responses, and reduced Treg and Tr1 responses have all been suggested to play a role in IBD pathophysiology. However, it is highly unlikely that all these responses are altered in each individual patient. With the rapidly expanding plethora of therapeutic options to inhibit inflammatory T-cell responses and stimulate regulatory T-cell responses, a crucial need is emerging for a robust set of immunological assays to predict and monitor therapeutic success at an individual level. Consequently, it is crucial to differentiate dominant inflammatory and regulatory CD4+ T helper responses in patients and relate these to disease course and therapy response. In this review, we provide an overview of how intestinal CD4+ T-cell responses arise, discuss the main phenotypes of CD4+ T helper responses, and review how they are implicated in IBD.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoxia Fu ◽  
Fei Sun ◽  
Faxi Wang ◽  
Junai Zhang ◽  
Biying Zheng ◽  
...  

Colitis is a major form of inflammatory bowel disease which involved mucosal immune dysfunction. Aloperine is an alkaloid isolated from the shrub Sophora alopecuroides L. and has been recognized as an effective treatment for inflammatory and allergic diseases. The present study aimed to examine the molecular mechanisms underlying aloperine-mediated colitis protection. We found that aloperine treatment improved colitis induced by dextran sodium sulfate (DSS) based on body weight, disease activity index, colonic length, and spleen index. Aloperine also effectively attenuated DSS-induced intestinal inflammation based on the pathological score and myeloperoxidase expression and activity in colon tissues. In addition, aloperine regulated T-cell proportions and promoted Foxp3 expression in the spleens and mesenteric lymph nodes of DSS-induced colitis mice and in the spleens of the Foxp3GFP mice. Aloperine inhibited Jurkat and mouse naïve T-cell apoptosis. Furthermore, aloperine inhibited PI3K/Akt/mTOR signaling and upregulated PP2A expression in the DSS-induced colitis mice and in Jurkat cells, but LB-100 (PP2A inhibitor) resulted in an elevated Akt activity in Jurkat cells, activated T-cells, and human splenic mononuclear cells. Aloperine inhibited T-cell and lymphocyte proliferation, but LB-100 reverse these effects. In conclusion, aloperine regulates inflammatory responses in colitis by inhibiting the PI3K/Akt/mTOR signaling in a PP2A-dependent manner.


2010 ◽  
Vol 208 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Jennifer H. Cox ◽  
Noelyn M. Kljavin ◽  
Nandhini Ramamoorthi ◽  
Lauri Diehl ◽  
Marcel Batten ◽  
...  

Interleukin-27 (IL-27) is a cytokine known to have both proinflammatory and immunoregulatory functions. The latter appear to dominate in vivo, where IL-27 suppresses TH17 responses and promotes the differentiation of Tr1 cells expressing interferon-γ and IL-10 and lacking forkhead box P3 (Foxp3). Accordingly, IL-27 receptor α (Il27ra)–deficient mice suffer from exacerbated immune pathology when infected with various parasites or challenged with autoantigens. Because the role of IL-27 in human and experimental mouse colitis is controversial, we studied the consequences of Il27ra deletion in the mouse T cell transfer model of colitis and unexpectedly discovered a proinflammatory role of IL-27. Absence of Il27ra on transferred T cells resulted in diminished weight loss and reduced colonic inflammation. A greater fraction of transferred T cells assumed a Foxp3+ phenotype in the absence of Il27ra, suggesting that IL-27 functions to restrain regulatory T cell (Treg) development. Indeed, IL-27 suppressed Foxp3 induction in vitro and in an ovalbumin-dependent tolerization model in vivo. Furthermore, effector cell proliferation and IFN-γ production were reduced in the absence of Il27ra. Collectively, we describe a proinflammatory role of IL-27 in T cell–dependent intestinal inflammation and provide a rationale for targeting this cytokine in pathological situations that result from a breakdown in peripheral immune tolerance.


Sign in / Sign up

Export Citation Format

Share Document