scholarly journals USP22 promotes IRF3 nuclear translocation and antiviral responses by deubiquitinating the importin protein KPNA2

2020 ◽  
Vol 217 (5) ◽  
Author(s):  
Zeng Cai ◽  
Meng-Xin Zhang ◽  
Zhen Tang ◽  
Qiang Zhang ◽  
Jing Ye ◽  
...  

USP22 is a cytoplasmic and nuclear deubiquitinating enzyme, and the functions of cytoplasmic USP22 are unclear. Here, we discovered that cytoplasmic USP22 promoted nuclear translocation of IRF3 by deubiquitianting and stabilizing KPNA2 after viral infection. Viral infection induced USP22-IRF3 association in the cytoplasm in a KPNA2-depedent manner, and knockdown or knockout of USP22 or KPNA2 impaired IRF3 nuclear translocation and expression of downstream genes after viral infection. Consistently, Cre-ER Usp22fl/fl or Lyz2-Cre Usp22fl/fl mice produced decreased levels of type I IFNs after viral infection and exhibited increased susceptibility to lethal viral infection compared with the respective control littermates. Mechanistically, USP22 deubiquitinated and stabilized KPNA2 after viral infection to facilitate efficient nuclear translocation of IRF3. Reconstitution of KPNA2 into USP22 knockout cells restored virus-triggered nuclear translocation of IRF3 and cellular antiviral responses. These findings define a previously unknown function of cytoplasmic USP22 and establish a mechanistic link between USP22 and IRF3 nuclear translocation that expands potential therapeutic strategies for infectious diseases.

2008 ◽  
Vol 36 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Rowan Higgs ◽  
Caroline A. Jefferies

The IRF [IFN (interferon) regulatory factor] family of transcription factors control many cellular processes, including induction of key antiviral cytokines, type I IFNs, following viral infection. Recent studies have revealed several endogenous and viral proteins involved in ubiquitin-mediated regulation of IRF activity and thus having an impact on type I IFN signalling. Through the ubiquitin pathway, these proteins can manipulate the antiviral response either by initiating proteasomal degradation of the IRFs or, in contrast, by promoting activation of the IRFs.


2004 ◽  
Vol 199 (12) ◽  
pp. 1651-1658 ◽  
Author(s):  
Andrea K. Perry ◽  
Edward K. Chow ◽  
Julia B. Goodnough ◽  
Wen-Chen Yeh ◽  
Genhong Cheng

TANK-binding kinase-1 (TBK1) and the inducible IκB kinase (IKK-i) have been shown recently to activate interferon (IFN) regulatory factor-3 (IRF3), the primary transcription factor regulating induction of type I IFNs. Here, we have compared the role and specificity of TBK1 in the type I IFN response to lipopolysaccharide (LPS), polyI:C, and viral challenge by examining IRF3 nuclear translocation, signal transducer and activator of transcription 1 phosphorylation, and induction of IFN-regulated genes. The LPS and polyI:C-induced IFN responses were abolished and delayed, respectively, in macrophages from mice with a targeted disruption of the TBK1 gene. When challenged with Sendai virus, the IFN response was normal in TBK1−/− macrophages, but defective in TBK1−/− embryonic fibroblasts. Although both TBK1 and IKK-i are expressed in macrophages, only TBK1 but not IKK-i was detected in embryonic fibroblasts by Northern blotting analysis. Furthermore, the IFN response in TBK1−/− embryonic fibroblasts can be restored by reconstitution with wild-type IKK-i but not a mutant IKK-i lacking kinase activity. Thus, our studies suggest that TBK1 plays an important role in the Toll-like receptor–mediated IFN response and is redundant with IKK-i in the response of certain cell types to viral infection.


2007 ◽  
Vol 35 (6) ◽  
pp. 1512-1514 ◽  
Author(s):  
M. Schröder ◽  
A.G. Bowie

Viral recognition is mediated by different classes of PRRs (pattern-recognition receptors) among which the TLRs (Toll-like receptors) and the RLHs [RIG (retinoic-acid-inducible)-like helicases] play major roles. The detection of PAMPs (pathogen-associated molecular patterns) by these PRRs leads to the initiation of signalling pathways that ultimately result in the activation of transcription factors such as NF-κB (nuclear factor κB) and IRF-3 [IFN (interferon) regulatory factor-3] and IRF-7 and the induction of pro-inflammatory cytokines and type I IFNs. Viruses have evolved a fine-tuned mechanism to evade detection by the immune system or to interfere with the resulting signalling pathways. Here, we discuss viral evasion proteins that specifically interfere with TLR and/or RLH signalling.


2019 ◽  
Author(s):  
Paulino Barragan-Iglesias ◽  
Úrzula Franco-Enzástiga ◽  
Vivekanand Jeevakumar ◽  
Andi Wangzhou ◽  
Vinicio Granados-Soto ◽  
...  

ABSTRACTOne of the first signs of viral infection is body-wide aches and pain. While this type of pain usually subsides, at the extreme, viral infections can induce painful neuropathies that can last for decades. Neither of these types of pain sensitization are well understood. A key part of the response to viral infection is production of interferons (IFNs), which then activate their specific receptors (IFNRs) resulting in downstream activation of cellular signaling and a variety of physiological responses. We sought to understand how type I IFNs (IFN-α and IFN-β) might act directly on nociceptors in the dorsal root ganglion (DRG) to cause pain sensitization. We demonstrate that type I IFNRs are expressed in small/medium DRG neurons and that their activation produces neuronal hyper-excitability and mechanical pain in mice. Type I IFNs stimulate JAK/STAT signaling in DRG neurons but this does not apparently result in PKR-eIF2α activation that normally induces an anti-viral response by limiting mRNA translation. Rather, type I interferons stimulate MNK-mediated eIF4E phosphorylation in DRG neurons to promote pain hypersensitivity. Endogenous release of type I IFNs with the double stranded RNA mimetic poly(I:C) likewise produces pain hypersensitivity that is blunted in mice lacking MNK-eIF4E signaling. Our findings reveal mechanisms through which type I IFNs cause nociceptor sensitization with implications for understanding how viral infections promote pain and can lead to neuropathies.SIGNIFICANCE STATEMENTIt is increasingly understood that pathogens interact with nociceptors to alert organisms to infection as well as to mount early host defenses. While specific mechanisms have been discovered for diverse bacteria and fungal pathogens, mechanisms engaged by viruses have remained elusive. Here we show that type 1 interferons, one of the first mediators produced by viral infection, act directly on nociceptors to produce pain sensitization. Type I interferons act via a specific signaling pathway (MNK-eIF4E signaling) that is known to produce nociceptor sensitization in inflammatory and neuropathic pain conditions. Our work reveals a mechanism through which viral infections cause heightened pain sensitivity


2010 ◽  
Vol 42 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Yongming Sang ◽  
Raymond R. R. Rowland ◽  
Richard A. Hesse ◽  
Frank Blecha

Type I interferons (IFNs) are central to innate and adaptive immunity, and many have unique developmental and physiological functions. However, in most species, only two subtypes, IFN-α and IFN-β, have been well studied. Because of the increasing importance of zoonotic viral diseases and the use of pigs to address human research questions, it is important to know the complete repertoire and activity of porcine type I IFNs. Here we show that porcine type I IFNs comprise at least 39 functional genes distributed along draft genomic sequences of chromosomes 1 and 10. These functional IFN genes are classified into 17 IFN-α subtypes, 11 IFN-δ subtypes, 7 IFN-ω subtypes, and single-subtype subclasses of IFN-αω, IFN-β, IFN-ε, and IFN-κ. We found that porcine type I IFNs have diverse expression profiles and antiviral activities against porcine reproductive and respiratory syndrome virus (PRRSV) and vesicular stomatitis virus (VSV), with activity ranging from 0 to >105 U·ng−1·ml−1. Whereas most IFN-α subtypes retained the greatest antiviral activity against both PRRSV and VSV in porcine and MARC-145 cells, some IFN-δ and IFN-ω subtypes, IFN-β, and IFN-αω differed in their antiviral activity based on target cells and viruses. Several IFNs, including IFN-α7/11, IFN-δ2/7, and IFN-ω4, exhibited minimal or no antiviral activity in the tested target cell-virus systems. Thus comparative studies showed that antiviral activity of porcine type I IFNs is virus- and cell-dependent, and IFN-αs are positively correlated with induction of MxA, an IFN-stimulated gene. Collectively, these data provide fundamental genomic information for porcine type I IFNs, information that is necessary for understanding porcine physiological and antiviral responses.


2010 ◽  
Vol 84 (21) ◽  
pp. 11045-11055 ◽  
Author(s):  
Deendayal Patel ◽  
Yuchen Nan ◽  
Meiyan Shen ◽  
Krit Ritthipichai ◽  
Xiaoping Zhu ◽  
...  

ABSTRACT Type I interferons (IFNs) IFN-α/β play an important role in innate immunity against viral infections by inducing antiviral responses. Porcine reproductive and respiratory syndrome virus (PRRSV) inhibits the synthesis of type I IFNs. However, whether PRRSV can inhibit IFN signaling is less well understood. In the present study, we found that PRRSV interferes with the IFN signaling pathway. The transcript levels of IFN-stimulated genes ISG15 and ISG56 and protein level of signal transducer and activator of transcription 2 (STAT2) in PRRSV VR2385-infected MARC-145 cells were significantly lower than those in mock-infected cells after IFN-α treatment. IFN-induced phosphorylation of both STAT1 and STAT2 and their heterodimer formation in the PRRSV-infected cells were not affected. However, the majority of the STAT1/STAT2/IRF9 (IFN regulatory factor 9) heterotrimers remained in the cytoplasm of PRRSV-infected cells, which indicates that the nuclear translocation of the heterotrimers was blocked. Overexpression of NSP1β of PRRSV VR2385 inhibited expression of ISG15 and ISG56 and blocked nuclear translocation of STAT1, which suggests that NSP1β might be the viral protein responsible for the inhibition of IFN signaling. PRRSV infection in primary porcine pulmonary alveolar macrophages (PAMs) also inhibited IFN-α-stimulated expression of the ISGs and the STAT2 protein. In contrast, a licensed low-virulence vaccine strain, Ingelvac PRRS modified live virus (MLV), activated expression of IFN-inducible genes, including those of chemokines and antiviral proteins, in PAMs without the addition of external IFN and had no detectable effect on IFN signaling. These findings suggest that PRRSV interferes with the activation and signaling pathway of type I IFNs by blocking ISG factor 3 (ISGF3) nuclear translocation.


2005 ◽  
Vol 201 (10) ◽  
pp. 1543-1553 ◽  
Author(s):  
Albert Zimmermann ◽  
Mirko Trilling ◽  
Markus Wagner ◽  
Manuel Wilborn ◽  
Ivan Bubic ◽  
...  

A mouse cytomegalovirus (MCMV) gene conferring interferon (IFN) resistance was identified. This gene, M27, encodes a 79-kD protein that selectively binds and down-regulates for signal transducer and activator of transcription (STAT)-2, but it has no effect on STAT1 activation and signaling. The absence of pM27 conferred MCMV susceptibility to type I IFNs (α/β), but it had a much more dramatic effect on type II IFNs (γ) in vitro and in vivo. A comparative analysis of M27+ and M27− MCMV revealed that the antiviral efficiency of IFN-γ was partially dependent on the synergistic action of type I IFNs that required STAT2. Moreover, STAT2 was directly activated by IFN-γ. This effect required IFN receptor expression and was independent of type I IFNs. IFN-γ induced increasing levels of tyrosine-phosphorylated STAT2 in M27− MCMV-infected cells that were essential for the antiviral potency of IFN-γ. pM27 represents a new strategy for simultaneous evasions from types I and II IFNs, and it documents an unknown biological significance for STAT2 in antiviral IFN-γ responses.


2006 ◽  
Vol 203 (12) ◽  
pp. 2589-2602 ◽  
Author(s):  
Edward K. Chow ◽  
Antonio Castrillo ◽  
Arash Shahangian ◽  
Liming Pei ◽  
Ryan M. O'Connell ◽  
...  

Viral infections and antiviral responses have been linked to several metabolic diseases, including Reye's syndrome, which is aspirin-induced hepatotoxicity in the context of a viral infection. We identify an interferon regulatory factor 3 (IRF3)–dependent but type I interferon–independent pathway that strongly inhibits the expression of retinoid X receptor α (RXRα) and suppresses the induction of its downstream target genes, including those involved in hepatic detoxification. Activation of IRF3 by viral infection in vivo greatly enhances bile acid– and aspirin-induced hepatotoxicity. Our results provide a critical link between the innate immune response and host metabolism, identifying IRF3-mediated down-regulation of RXRα as a molecular mechanism for pathogen-associated metabolic diseases.


2015 ◽  
Vol 112 (36) ◽  
pp. 11324-11329 ◽  
Author(s):  
Dandan Lin ◽  
Man Zhang ◽  
Meng-Xin Zhang ◽  
Yujie Ren ◽  
Jie Jin ◽  
...  

Host pathogen-recognition receptors detect nucleic acid from invading viruses and initiate a series of signaling pathways that lead to the production of type I interferons (IFNs) and proinflammatory cytokines. Here, we found that a viral infection-induced deubiquitinase (DUB), ubiquitin-specific protease 25 (USP25) was required for host defense against RNA and DNA viruses. The activation of transcription factors IRF3 and NF-κB was impaired and the production of type I IFNs and proinflammatory cytokines was inhibited in Usp25−/− cells compared with the wild-type counterparts after RNA or DNA viruses infection. Consistently, USP25 deficient mice were more susceptible to H5N1 or HSV-1 infection compared with the wild-type mice. USP25 was associated with TRAF3 and TRAF6 after infection by RNA or DNA viruses and protected virus-induced proteasome-dependent or independent degradation of TRAF3 and TRAF6, respectively. Moreover, reconstitution of TRAF3 and TRAF6 into Usp25−/− MEFs restored virus-triggered production of type I IFNs and proinflammatory cytokines. Our findings thus reveal a previously uncovered positive feedback regulation of innate immune responses against RNA and DNA viruses by USP25.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1134
Author(s):  
Philippe Georgel

Interleukin-1β (IL-1β) and type I interferons (IFNs) are major cytokines involved in autoinflammatory/autoimmune diseases. Separately, the overproduction of each of these cytokines is well described and constitutes the hallmark of inflammasomopathies and interferonopathies, respectively. While their interaction and the crosstalk between their downstream signaling pathways has been mostly investigated in the frame of infectious diseases, little information on their interconnection is still available in the context of autoinflammation promoted by sterile triggers. In this review, we will examine the respective roles of IL-1β and type I IFNs in autoinflammatory/rheumatic diseases and analyze their potential connections in the pathophysiology of some of these diseases, which could reveal novel therapeutic opportunities.


Sign in / Sign up

Export Citation Format

Share Document