The germinal center reaction depends on RNA methylation and divergent functions of specific methyl readers

2021 ◽  
Vol 218 (10) ◽  
Author(s):  
Amalie C. Grenov ◽  
Lihee Moss ◽  
Sarit Edelheit ◽  
Ross Cordiner ◽  
Dominik Schmiedel ◽  
...  

Long-lasting immunity depends on the generation of protective antibodies through the germinal center (GC) reaction. N6-methyladenosine (m6A) modification of mRNAs by METTL3 activity modulates transcript lifetime primarily through the function of m6A readers; however, the physiological role of this molecular machinery in the GC remains unknown. Here, we show that m6A modifications by METTL3 are required for GC maintenance through the differential functions of m6A readers. Mettl3-deficient GC B cells exhibited reduced cell-cycle progression and decreased expression of proliferation- and oxidative phosphorylation–related genes. The m6A binder, IGF2BP3, was required for stabilization of Myc mRNA and expression of its target genes, whereas the m6A reader, YTHDF2, indirectly regulated the expression of the oxidative phosphorylation gene program. Our findings demonstrate how two independent gene networks that support critical GC functions are modulated by m6A through distinct mRNA binders.

2020 ◽  
Author(s):  
Amalie C. Grenov ◽  
Lihee Moss ◽  
Sarit Edelheit ◽  
Ross Cordiner ◽  
Dominik Schmiedel ◽  
...  

AbstractLong-lasting immunity from pathogens depends on the generation of protective antibodies through the germinal center (GC) reaction. The Myc gene produces highly short-lived transcripts which are essential for generation of high-affinity antibodies. mRNA lifetime is regulated by N6-methyladenosine (m6A)-modification of mRNAs through METTL3 activity; however, the role of this machinery in the GC remains unclear. Here, we find that m6A-modification of mRNAs is required for GC maintenance through Myc mRNA stabilization by the atypical m6A-interactor, IGF2BP3. MYC expression, activation of MYC transcriptional programs and cell-cycle progression were diminished in METTL3-deficient GC B cells. METTL3 attenuated Myc-transcript decay and overexpression of MYC in METTL3-deficient GC B cells restored the GC reaction. IGF2BP3 which was induced by CD40-signaling, reinforced MYC expression and MYC-related gene programs in GC B cells. Our findings explain how GC responses are maintained through regulation of Myc-transcript lifetime and expose new targets for manipulation in MYC-driven lymphoma.One Sentence SummaryGerminal centers depend on the m6A-machinery


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.


1991 ◽  
Vol 11 (12) ◽  
pp. 6177-6184
Author(s):  
B Ducommun ◽  
P Brambilla ◽  
G Draetta

suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.


2004 ◽  
Vol 16 (3) ◽  
pp. 287-300 ◽  
Author(s):  
Maria Teresa Discenza ◽  
Jerry Pelletier

Discenza, Maria Teresa, and Jerry Pelletier. Insights into the physiological role of WT1 from studies of genetically modified mice. Physiol Genomics 16: 287-300, 2004; 10.1152/physiolgenomics.00164.2003.—The identification of WT1 gene mutations in children with WAGR and Denys-Drash syndromes pointed toward a role for WT1 in genitourinary system development. Biochemical analysis of the different WT1 protein isoforms showed that WT1 is a transcription factor and also has the ability to bind RNA. Analysis of WT1 complexes identified several target genes and protein partners capable of interacting with WT1. Some of these studies placed WT1, its downstream targets, and protein partners in a transcriptional regulatory network that controls urogenital system development. We review herein studies on WT1 knockout and transgenic models that have been instrumental in defining a physiological role for WT1 in normal and abnormal urogenital development.


2004 ◽  
Vol 24 (14) ◽  
pp. 6403-6409 ◽  
Author(s):  
Michael M. Schuendeln ◽  
Roland P. Piekorz ◽  
Christian Wichmann ◽  
Youngsoo Lee ◽  
Peter J. McKinnon ◽  
...  

ABSTRACT TACC2 is a member of the transforming acidic coiled-coil-containing protein family and is associated with the centrosome-spindle apparatus during cell cycling. In vivo, the TACC2 gene is expressed in various splice forms predominantly in postmitotic tissues, including heart, muscle, kidney, and brain. Studies of human breast cancer samples and cell lines suggest a putative role of TACC2 as a tumor suppressor protein. To analyze the physiological role of TACC2, we generated mice lacking TACC2. TACC2-deficient mice are viable, develop normally, are fertile, and lack phenotypic changes compared to wild-type mice. Furthermore, TACC2 deficiency does not lead to an increased incidence of tumor development. Finally, in TACC2-deficient embryonic fibroblasts, proliferation and cell cycle progression as well as centrosome numbers are comparable to those in wild-type cells. Therefore, TACC2 is not required, nonredundantly, for mouse development and normal cell proliferation and is not a tumor suppressor protein.


2021 ◽  
Vol 118 (22) ◽  
pp. e2102940118
Author(s):  
Shuiqiao Yuan ◽  
Zhuqing Wang ◽  
Hongying Peng ◽  
Sean M. Ward ◽  
Grant W. Hennig ◽  
...  

Mammalian oviducts play an essential role in female fertility by picking up ovulated oocytes and transporting and nurturing gametes (sperm/oocytes) and early embryos. However, the relative contributions to these functions from various cell types within the oviduct remain controversial. The oviduct in mice deficient in two microRNA (miRNA) clusters (miR-34b/c and miR-449) lacks cilia, thus allowing us to define the physiological role of oviductal motile cilia. Here, we report that the infundibulum without functional motile cilia failed to pick up the ovulated oocytes. In the absence of functional motile cilia, sperm could still reach the ampulla region, and early embryos managed to migrate to the uterus, but the efficiency was reduced. Further transcriptomic analyses revealed that the five messenger ribonucleic acids (mRNAs) encoded by miR-34b/c and miR-449 function to stabilize a large number of mRNAs involved in cilium organization and assembly and that Tubb4b was one of their target genes. Our data demonstrate that motile cilia in the infundibulum are essential for oocyte pickup and thus, female fertility, whereas motile cilia in other parts of the oviduct facilitate gamete and embryo transport but are not absolutely required for female fertility.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3536-3536 ◽  
Author(s):  
David Dominguez-Sola ◽  
Jennifer Kung ◽  
Victoria A Wells ◽  
Antony B Holmes ◽  
Laura Pasqualucci ◽  
...  

Abstract A significant fraction of B cell non-Hodgkin lymphomas (B-NHL) of germinal center origin carry heterozygous missense mutations in FOXO1, a member of the FOXO family of transcription factors. FOXO1 is a central component of the PI3K signaling cascade engaged by the B cell receptor and is essential for B cell homeostasis and survival (Dengler et al, Nat Immunol 2008; Srinivasan et al, Cell 2009; Lin et al, Nat Immunol 2010). In response to PI3K activation, AKT phosphorylates FOXO1 leading to its nuclear-cytoplasmic translocation and inactivation. Missense mutations of the FOXO1 gene are detectable in germinal center (GC)-derived B-NHL, including ~12% of Burkitt Lymphoma (BL) and ~9% of Diffuse Large B Cell Lymphoma (DLBCL) cases (Schmitz et al, Nature 2012; Trinh et al, Blood 2013; Pasqualucci et al, Cell Rep 2014). The role of FOXO1 in normal GC development as well as the contribution of its mutations to lymphomagenesis is unclear. We show that FOXO1 expression is restricted to the dark zone of GCs, where its nuclear localization is detectable in most B cells. Mice carrying the conditional inactivation of FOXO1 in GC B cells display normal GC in number and size. However, these GCs lack phenotypically defined (CXCR4hi/CD86lo) dark zones and are entirely composed by light zone B cells (CXCR4lo/CD86hi). FOXO1-/- GC B cells express AICDA and carry a normal number of mutations in their immunonoglobulin genes, but do not undergo affinity maturation, resulting in severely impaired antigen responses. In order to identify the biological program controlled by FOXO1 in GC B cells, we identified candidate transcriptional target genes by integrating ChIP-seq and gene expression data. These analyses showed that that the establishment of the dark zone fate relies on a FOXO1-dependent transcriptional network that is enriched for genes involved in immune signaling cascades triggered by the B cell receptor and by a variety of cytokines controlling GC polarity. Notably, a majority of these target genes are co-bound and co-regulated, in a FOXO1-dependent manner, by BCL6, a well characterized GC master regulator. To assess the role of BL- and DLBCL-associated mutations, we first investigated the subcellular localization of FOXO1 mutant proteins by transfecting wild type and mutant GFP-tagged FOXO1 alleles into HeLa cells. As previously shown (Trinh et al, Blood 2013), this analysis showed that mutant FOXO1 proteins, but not the wild-type one, readily localize in the nucleus. Analogously, immunofluorescence analysis of BL and DLBCL samples showed the presence of nuclear FOXO1 in all tumors carrying mutations in the FOXO1 gene. However, nuclear localization was also detectable in virtually all cases carrying normal FOXO1 genes. Accordingly, in vitro experiments testing the ability of normal and mutated FOXO1 proteins to respond to various signals activating the PI3K pathway in multiple BL and DLBCL cell lines, failed to display a correlation between the presence of mutations and responsiveness to these signals. Taken together, these results suggest that other mechanisms in addition to direct gene mutation are responsible for the constitutive nuclear localization of FOXO1 in tumors. We are now examining the consequences of FOXO1 missense mutations in vivo, by reconstituting FOXO1-/- GC B cells with FOXO1 mutants using bone marrow chimeras. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Annalisa D'Avola ◽  
Nathalie Legrave ◽  
Mylene Tajan ◽  
Probir Chakravarty ◽  
Ryan Shearer ◽  
...  

The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrate that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B-cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate limiting enzyme in this pathway, leads to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis is a characteristic of germinal center B-cell derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induces apoptosis in lymphoma cells reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Hayley Widden ◽  
Aneta Kaczmarczyk ◽  
Ashok Subedi ◽  
Robert H. Whitaker ◽  
William J. Placzek

Abstract MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.


Sign in / Sign up

Export Citation Format

Share Document