Is Whole‐Plant Photosynthetic Rate Proportional to Leaf Area? A Test of Scalings and a Logistic Equation by Leaf Demography Census

2009 ◽  
Vol 173 (5) ◽  
pp. 640-649 ◽  
Author(s):  
Kohei Koyama ◽  
Kihachiro Kikuzawa

1991 ◽  
Vol 9 (3) ◽  
pp. 163-167
Author(s):  
Stuart L. Warren ◽  
Frank A. Blazich ◽  
Mack Thetford

Abstract Uniconazole was applied as a foliar spray or medium drench to six woody landscape species: ‘Sunglow’ azalea; flame azalea; ‘Spectabilis’ forsythia; ‘Compacta’ holly; ‘Nellie R. Stevens’ holly; and mountain pieris. One hundred days after uniconazole application, leaf, stem, and top dry weight of all species, except flame azalea and mountain pieris, decreased as uniconazole concentration increased. Compared to controls, stem and leaf dry weight were reduced by uniconazole 18 to 60% and 13 to 32%, respectively, depending on species and method of application. Stem dry weight was reduced to a greater degree, compared to leaf dry weight. For all species, drench application was more effective than foliar spray in reducing leaf, stem, and top dry weight. Leaf area of ‘Spectabilis’ forsythia and ‘Nellie R. Stevens’ holly decreased with increasing rates. However, specific leaf weight was not affected. Uniconazole did not significantly affect leaf net photosynthetic rate, stomatal conductance or internal leaf CO2 concentrations in ‘Spectabilis’ forsythia or ‘Nellie R. Stevens’ holly. No phytotoxicity was observed on any species.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinli Bi ◽  
Huili Zhou

AbstractA well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.



1992 ◽  
Vol 40 (5) ◽  
pp. 457 ◽  
Author(s):  
SC Wong ◽  
PE Kriedemann ◽  
GD Farquhar

Four eucalypt species were selected to represent two ecologically disparate groups which would be expected to contrast in seedling vigour and in the nature of growth responses to CO2 × nitrogen supply. Eucalyptus camaldulensis and E. cypellocarpa were taken as examples of fast-growing species with a wide distribution, that develop into large trees. By contrast, E. pauciflora and E. pulverulenta become smaller trees, and show a more limited distribution. Seedlings were established in pots (5 L) of a loamy soil and supplied with nutrient solution containing either 1.2 or 6.0 mM NO3- in both ambient (33 Pa) and CO2-enriched (66 Pa) greenhouses. Analysis of growth response to treatments (2 × 2 factorial) was based on destructive harvest of plants sampled on four occasions over 84 days for E. carnaldulensis and E. cypellocarpa, and 100 days for E. pulverulenta and E. pauciflora. A positive CO2 × N interaction on plant dry mass and leaf area was expressed in all species throughout the study period. In E. carnaldulensis and E. cypellocarpa, plant mass was doubled by high N at 33 Pa CO2, compared with a three to four-fold increase at 66 Pa to reach 34g by final harvest. In E. pulverulenta and E. pauciflora, slower growth resulted in about 50% less mass at a given age, but relative increases due to CO2 and N were of a similar order. A distinction can be made between N and CO2 effects on growth processes as follows. When trees were grown on low N, elevated CO2 increased nitrogen-use efficiency (NUE) at both leaf and whole plant levels. On high N, leaf NUE was increased in E. camaldulensis and E. cypellocarpa, but decreased in E. pulverulenta and E. pauciflora. Whole plant NUE showed no consistent response to elevated CO2 when plants were supplied high N. Net assimilation rate (NAR) was increased by elevated CO2 in all species on either N treatment. Moreover, high N increased NAR under either CO2 treatment in all species. There was a positive N × CO2 interaction on NAR in E. carnaldulensis and E. cypellocarpa, but not in E. pulverulenta and E. pauciflora. Growth indices for E. carnaldulensis and E. cypellocarpa species, and especially E. carnaldulensis, generally exceeded those for E. pulverulenta and E. pauciflora in terms of NAR, leaf NUE, N-enhancement of CO2 effects on leaf area and biomass, and non-structural carbohydrate content of foliage.



1996 ◽  
Vol 121 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Ursula Schuch ◽  
Richard A. Redak ◽  
James Bethke

Six cultivars of poinsettia (Euphorbia pulcherrima Wind.), `Angelika White', `Celebrate 2', `Freedom Red', `Lilo Red', `Red Sails', and `Supjibi Red' were grown for 9 weeks during vegetative development under three constant-feed fertilizer treatments, 80,160, or 240 mg N/liter and two irrigation regimes, well-watered (high irrigation) or water deficient (low irrigation). Plants fertilized with 80 or 240 mg N/liter were 10% to 18% shorter, while those fertilized with 160 mg N/liter were 25 % shorter with low versus high irrigation. Leaf area and leaf dry weight increased linearly in response to increasing fertilizer concentrations. Low irrigation reduced leaf area, leaf, stem, and shoot dry weight 3670 to 41%. Cultivars responded similarly to irrigation and fertilizer treatments in all components of shoot biomass production and no interactions between the main effects and cultivars occurred. Stomatal conductance and transpiration decreased with increasing fertilizer rates or sometimes with low irrigation. Highest chlorophyll contents occurred in leaves of `Lilo Red' and `Freedom Red'. Leaves of plants fertilized with 80 mg N/liter were deficient in leaf N and had 40 % to 49 % lower leaf chlorophyll content compared to plants fertilized with 160 or 240 mg N/liter. Irrigation had no effect on leaf N or chlorophyll content. At the end of the experiment leaves of `Supjibi Red' and `Angelika White' contained higher concentrations of soluble proteins than the other four cultivars.



2002 ◽  
Vol 127 (2) ◽  
pp. 290-296 ◽  
Author(s):  
Keith A. Funnell ◽  
Errol W. Hewett ◽  
Julie A. Plummer ◽  
Ian J. Warrington

Photosynthetic activity of individual leaves of Zantedeschia Spreng. `Best Gold' aff. Z. pentlandii (Wats.) Wittm. [syn. Richardia pentlandii Wats.] (`Best Gold'), were quantified with leaf expansion and diurnally, under a range of temperature and photosynthetic photon flux (PPF) regimes. Predictive models incorporating PPF, day temperature, and percentage leaf area expansion accounted for 78% and 81% of variation in net photosynthetic rate (Pn) before, and postattainment of, 75% maximum leaf area, respectively. Minimal changes in Pn occurred during the photoperiod when environmental conditions were stable. Maximum Pn (10.9μmol·m-2·s-1 or 13.3 μmol·g-1·s-1) occurred for plants grown under high PPF (694 μmol·m-2·s-1) and day temperature (28 °C). Acclimation of Pn was less than complete, with any gain through a greater light-saturated photosynthetic rate (Pmax) at high PPF also resulting in a reduction in quantum yield. Similarly, any gain in acclimation through increased quantum yield under low PPF occurred concurrently with reduced Pmax. It was concluded that Zantedeschia `Best Gold' is a shade tolerant selection, adapted to optimize photosynthetic rate under the climate of its natural habitat, by not having obligate adaptation to sun or shade habitats.



Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 556 ◽  
Author(s):  
Masahiro Yamaguchi ◽  
Yoshiyuki Kinose ◽  
Hideyuki Matsumura ◽  
Takeshi Izuta

The current level of tropospheric ozone (O3) is expected to reduce the net primary production of forest trees. Here, we evaluated the negative effects of O3 on the photosynthetic CO2 uptake of Japanese forest trees species based on their cumulative stomatal O3 uptake, defined as the phytotoxic O3 dose (POD). Seedlings of four representative Japanese deciduous broad-leaved forest tree species (Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla var. japonica) were exposed to different O3 concentrations in open-top chambers for two growing seasons. The photosynthesis–light response curves (A-light curves) and stomatal conductance were measured to estimate the leaf-level cumulative photosynthetic CO2 uptake (ΣPn_est) and POD, respectively. The whole-plant-level ΣPn_est were highly correlated with the whole-plant dry mass increments over the two growing seasons. Because whole-plant growth is largely determined by the amount of leaf area per plant and net photosynthetic rate per leaf area, this result suggests that leaf-level ΣPn_est, which was estimated from the monthly A-light curves and hourly PPFD, could reflect the cumulative photosynthetic CO2 uptake of the seedlings per unit leaf area. Although the O3-induced reductions in the leaf-level ΣPn_est were well explained by POD in all four tree species, species-specific responses of leaf-level ΣPn_est to POD were observed. In addition, the flux threshold appropriate for the linear regression of the responses of relative leaf-level ΣPn_est to POD was also species-specific. Therefore, species-specific responses of cumulative photosynthetic CO2 uptake to POD could be used to accurately evaluate O3 impact on the net primary production of deciduous broad-leaved trees.



1997 ◽  
Vol 24 (5) ◽  
pp. 693 ◽  
Author(s):  
Zhenmin Lu ◽  
Jiwei Chen ◽  
Richard G. Percy ◽  
Eduardo Zeiger

Gossypium barbadense L. (Pima) and Gossypium hirsutum L. (upland) cottons are the two major fibre producing species grown in the south-western United States, where lint yields are adversely affected by high temperatures. In these environments, heat-adapted upland cultivars show higher yields and heat resistance than advanced Pima cultivars. Recent studies with an historical series of commercial Pima cultivars have shown that increases in lint yield and heat resistance are tightly coupled to increases in stomatal conductance and photosynthetic rate, and to decreases in leaf area. In the present study, Pima S-6 and Pima S-7 (advanced Pima cultivars) and Deltapine 90 (advanced upland cultivar) were compared under field and laboratory conditions to determine whether the physiological and morphological gradients found in the Pima historical series extrapolate to upland cotton. In the field, Deltapine 90 showed 25–35% higher stomatal conductance, 35–50% higher photosynthetic rate and 45% smaller leaf area than Pima S-6. The higher photosynthetic rate and stomatal conductance of Deltapine 90 leaves were partially related to their sun-tracking ability. In gas exchange experiments that prevented sun-tracking, the two cultivars had comparable photosynthetic rate as a function of incident radiation, while stomatal conductance was higher in upland cotton. In the 25–35°C range, photosynthetic rate as a function of temperature remained nearly constant in both cultivars, and was higher in upland cotton at all temperatures. Stomatal conductance showed a strong temperature-dependence, and conductance value and the slope of the stomatal response to temperature were higher in Deltapine 90. In progeny from a cross between Deltapine 90 and Pima S-7, the segregation of stomatal conductance in F1 and F2 populations showed a clear genetic component. These results indicate that the differences in photosynthetic rate, stomatal conductance and leaf area associated with increases in lint yield and heat resistance in the Pima historical series are also evident in a comparison between advanced cultivars of upland and Pima cotton. Upland cotton could be used as a source of genetic variation for high stomatal conductance in Pima breeding programs.



2014 ◽  
Vol 41 (No. 3) ◽  
pp. 138-146 ◽  
Author(s):  
C. Xu ◽  
D.I. Leskovar

Field experiments were conducted in two seasons to investigate growth, physiology and yield responses of cabbage (Brassica oleracea L. cvs Pennant and Rio Grande) to deficit irrigation. In 2012 season, 50% of crop evapotranspiration (ETc) irrigation temporarily decreased plant size, reduced leaf area, fresh weight, relative water content, specific leaf area and gas exchange during late development, and decreased head fresh weight, size, marketable and total yield. Deficit irrigation at 75% ETc had little influence on plant growth and physiology, but it still reduced both marketable and total yield. In 2013 season, 75% ETc irrigation had little influence on plant growth, leaf characteristics, photosynthetic rate, head fresh weight and size, but it temporarily increased chlorophyll and carotenoid content, and decreased stomata conductance, transpiration, and marketable yield. Pennant, the green-head cultivar, had higher photosynthetic rate, head fresh weight, marketable and total yield than the red-head cultivar Rio Grande. In both seasons, deficit irrigations did not influence cabbage head dry weight, indicating that most yield reduction under deficit irrigations is related to water content.  





Sign in / Sign up

Export Citation Format

Share Document