scholarly journals Presence of High‐Titer Neutralizing Antibodies against Enterovirus 71 in Intravenous Immunoglobulin Manufactured from Chinese Donors

2010 ◽  
Vol 50 (1) ◽  
pp. 125-126 ◽  
Author(s):  
Ruiyuan Cao ◽  
Jianfeng Han ◽  
Yongqiang Deng ◽  
Man Yu ◽  
Ede Qin ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1421
Author(s):  
Yong Yang ◽  
Jinkai Zang ◽  
Shiqi Xu ◽  
Xueyang Zhang ◽  
Sule Yuan ◽  
...  

The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most of the currently approved SARS-CoV-2 vaccines use the prototype strain-derived spike (S) protein or its receptor-binding domain (RBD) as the vaccine antigen. The emergence of several novel SARS-CoV-2 variants has raised concerns about potential immune escape. In this study, we performed an immunogenicity comparison of prototype strain-derived RBD, S1, and S ectodomain trimer (S-trimer) antigens and evaluated their induction of neutralizing antibodies against three circulating SARS-CoV-2 variants, including B.1.1.7, B.1.351, and B.1.617.1. We found that, at the same antigen dose, the RBD and S-trimer vaccines were more potent than the S1 vaccine in eliciting long-lasting, high-titer broadly neutralizing antibodies in mice. The RBD immune sera remained highly effective against the B.1.1.7, B.1.351, and B.1.617.1 variants despite the corresponding neutralizing titers decreasing by 1.2-, 2.8-, and 3.5-fold relative to that against the wild-type strain. Significantly, the S-trimer immune sera exhibited comparable neutralization potency (less than twofold variation in neutralizing GMTs) towards the prototype strain and all three variants tested. These findings provide valuable information for further development of recombinant protein-based SARS-CoV-2 vaccines and support the continued use of currently approved SARS-CoV-2 vaccines in the regions/countries where variant viruses circulate.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Benoît Misset ◽  
Eric Hoste ◽  
Anne-Françoise Donneau ◽  
David Grimaldi ◽  
Geert Meyfroidt ◽  
...  

Abstract Background The COVID-19 pandemic reached Europe in early 2020. Convalescent plasma is used without a consistent evidence of efficacy. Our hypothesis is that passive immunization with plasma collected from patients having contracted COVID-19 and developed specific neutralizing antibodies may alleviate symptoms and reduce mortality in patients treated with mechanical ventilation for severe respiratory failure during the evolution of SARS-CoV-2 pneumonia. Methods We plan to include 500 adult patients, hospitalized in 16 Belgian intensive care units between September 2020 and 2022, diagnosed with SARS-CoV-2 pneumonia, under mechanical ventilation for less than 5 days and a clinical frailty scale less than 6. The study treatment will be compared to standard of care and allocated by randomization in a 1 to 1 ratio without blinding. The main endpoint will be mortality at day 28. We will perform an intention to treat analysis. The number of patients to include is based on an expected mortality rate at day 28 of 40 percent and an expected relative reduction with study intervention of 30 percent with α risk of 5 percent and β risk of 20 percent. Discussion This study will assess the efficacy of plasma in the population of mechanically ventilated patients. A stratification on the delay from mechanical ventilation and inclusion will allow to approach the optimal time use. Selecting convalescent plasmas with a high titer of neutralizing antibodies against SARS-CoV-2 will allow a homogeneous study treatment. The inclusion in the study is based on the consent of the patient or his/her legal representative, and the approval of the Investigational Review Board of the University hospital of Liège, Belgium. A data safety monitoring board (DSMB) has been implemented. Interim analyses have been planned at 100, 2002, 300 and 400 inclusions in order to decide whether the trail should be discontinued prematurely for ethical issues. We plan to publish our results in a peer-reviewed journal and to present them at national and international conferences. Funding and registration The trial is funded by the Belgian Health Care Knowledge Center KCE # COV201004 Trial registration Clinicaltrials.gov registration number NCT04558476. Registered 14 September 2020—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04558476


2019 ◽  
Vol 20 (6) ◽  
pp. 1256 ◽  
Author(s):  
Mohd Anasir ◽  
Chit Poh

Hand, foot, and mouth disease (HFMD) commonly produces herpangina, but fatal neurological complications have been observed in children. Enterovirus 71 (EV-A71) and Coxsackievirus 16 (CV-A16) are the predominant viruses causing HFMD worldwide. With rising concern about HFMD outbreaks, there is a need for an effective vaccine against EV-A71 and CV-A16. Although an inactivated vaccine has been developed against EV-A71 in China, the inability of the inactivated vaccine to confer protection against CV-A16 infection and other HFMD etiological agents, such as CV-A6 and CV-A10, necessitates the exploration of other vaccine platforms. Thus, the antigenic peptide-based vaccines are promising platforms to develop safe and efficacious multivalent vaccines, while the monoclonal antibodies are viable therapeutic and prophylactic agents against HFMD etiological agents. This article reviews the available information related to the antigenic peptides of the etiological agents of HFMD and their neutralizing antibodies that can provide a basis for the design of future therapies against HFMD etiological agents.


2020 ◽  
Author(s):  
Thibault Colombani ◽  
Loek Eggermont ◽  
Zachary Rogers ◽  
Lindsay McKay ◽  
Laura Avena ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global health crisis, resulting in a critical need for effective vaccines that generate protective antibodies. Protein subunit vaccines represent a promising approach but often lack the immunogenicity required for strong immune stimulation. To overcome this challenge, we first demonstrate that advanced biomaterials boost effectiveness of SARS-CoV-2 protein subunit vaccines. Additionally, we report that oxygen is a powerful immunological co-adjuvant, a game-changer in the field for unlocking the full potential of vaccines. Mice immunized with oxygen-generating cryogel vaccines exhibited a robust and balanced Th1 and Th2 immune response, leading to sustained and high titer production of neutralizing antibodies against SARS-CoV-2. Our data indicate that this platform is a revolutionary technology with the potential to reinforce any vaccine.


Author(s):  
Ceyla M.O. Castro ◽  
Ana Cecília R. Cruz ◽  
Edson E. da Silva ◽  
Maria de Lourdes C. Gomes

In many countries, the Enterovirus 71 (EV-71) Picornaviridae family is associated to hand, foot and mouth disease in addition to acute neurological diseases while in Brazil these viruses are more closely associated to the latter group. The aim of this research was to use the first EV-71 isolate of the Northern region of Brazil in molecular and seroepidemiologic studies. Two (2.2%) out of 88 stool samples (44 cases of AFP), collected from January 1998 to December 2000 were positive for EV-71 isolation (73442/PA/99). Nucleotide sequence of the gen that codifies the VP1 protein showed that isolate 73442/PA/99 was similar to the EV-71 strains belonging to genotype B - more closely identified with EV-71 from North America. Neutralization test with 389 sera samples collected from January 1998 to November 2001, from individuals ranging from 0 to 15 years of age living in the city of Belém, State of Pará showed the following results in relation to isolate 73442/PA/99 and prototype BrCr: a total of 207 individuals (53.2%) had neutralization antibodies to both viruses, 167 (42.9%) had no antibodies and 15 showed the presence of neutralizing antibodies to one of the two viruses. Only 20.2% of the children aged 0 to 3 had neutralizing antibodies to EV-71, indicating that these children were more susceptible to the infection. Both the seroprevalence study and VP1 sequencing were important to demonstrate the spread and the molecular pattern of the EV-71 circulating in the Northern Region of Brazil.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 277
Author(s):  
Clare Burn Aschner ◽  
Carl Pierce ◽  
David M. Knipe ◽  
Betsy C. Herold

Herpes simplex viruses (HSV) are significant global health problems associated with mucosal and neurologic disease. Prior experimental vaccines primarily elicited neutralizing antibodies targeting glycoprotein D (gD), but those that advanced to clinical efficacy trials have failed. Preclinical studies with an HSV-2 strain deleted in gD (ΔgD-2) administered subcutaneously demonstrated that it elicited a high titer, weakly neutralizing antibodies that activated Fcγ receptors to mediate antibody-dependent cellular cytotoxicity (ADCC), and completely protected mice against lethal disease and latency following vaginal or skin challenge with HSV-1 or HSV-2. Vaccine efficacy, however, may be impacted by dose and route of immunization. Thus, the current studies were designed to compare immunogenicity and efficacy following different routes of vaccination with escalating doses of ΔgD-2. We compared ΔgD-2 with two other candidates: recombinant gD protein combined with aluminum hydroxide and monophosphoryl lipid A adjuvants and a replication-defective virus deleted in two proteins involved in viral replication, dl5-29. Compared to the subcutaneous route, intramuscular and/or intradermal immunization resulted in increased total HSV antibody responses for all three vaccines and boosted the ADCC, but not the neutralizing response to ΔgD and dl5-29. The adjuvanted gD protein vaccine provided only partial protection and failed to elicit ADCC independent of route of administration. In contrast, the increased ADCC following intramuscular or intradermal administration of ΔgD-2 or dl5-29 translated into significantly increased protection. The ΔgD-2 vaccine provided 100% protection at doses as low as 5 × 104 pfu when administered intramuscularly or intradermally, but not subcutaneously. However, administration of a combination of low dose subcutaneous ΔgD-2 and adjuvanted gD protein resulted in greater protection than low dose ΔgD-2 alone indicating that gD neutralizing antibodies may contribute to protection. Taken together, these results demonstrate that ADCC provides a more predictive correlate of protection against HSV challenge in mice and support intramuscular or intradermal routes of vaccination.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
C. Q. Hoang ◽  
H. D. Nguyen ◽  
N. X. Ho ◽  
T. H. T. Vu ◽  
T. T. M. Pham ◽  
...  

Background. Scarce information exists about immunity to hand, foot, and mouth disease (HFMD) among household contacts of index cases in Vietnam and what that means for reducing ongoing HFMD transmission in the community. Methods. We analyzed neutralizing antibodies (NT) and the incidence of enterovirus (EVs) infection among household contacts of index cases in a province where HFMD remains endemic. Throat swab and 2 mL blood samples from household contacts were collected at enrollment, during and after 2 weeks follow-up. Results. The incidence of EV-A71 infection among household contacts was 40/84 (47.6%, 95% Cl: 36.9-58.3%), compared with 106/336 (31.5%, 95% Cl: 26.6-36.5%) for CV-A6 and 36/107 (33.6%, 95% Cl: 24.7-42.6%) for CV-A16. The incidence of CV-A6 infection was fairly constant across ages; in contrast, CV-A71 and CV-A16 had some variation across ages. At baseline, higher geometric mean titer (GMT) of EV-A71, CV-A6, and CV-A16 antibody titers was found for 25-34-year groups (range 216.3 to 305.0) compared to the other age groups. There was a statistically significant difference in GMT values of CV-A6 and CV-A16 between those who had an infection or did not have infection among households with an index case of these serotypes. Conclusions. Our results indicated that adults were becoming infected with HFMD and could be contributing to the transmission. There is, therefore, a need for considering the household setting as an additional target for intervention programs for HFMD.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Ken Fujii ◽  
Yui Sudaka ◽  
Ayako Takashino ◽  
Kyousuke Kobayashi ◽  
Chikako Kataoka ◽  
...  

ABSTRACTEnterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and sometimes causes severe or fatal neurological complications. The amino acid at VP1-145 determines the virological characteristics of EV71. Viruses with glutamic acid (E) at VP1-145 (VP1-145E) are virulent in neonatal mice and transgenic mice expressing human scavenger receptor B2, whereas those with glutamine (Q) or glycine (G) are not. However, the contribution of this variation to pathogenesis in humans is not fully understood. We compared the virulence of VP1-145E and VP1-145G viruses of Isehara and C7/Osaka backgrounds in cynomolgus monkeys. VP1-145E, but not VP1-145G, viruses induced neurological symptoms. VP1-145E viruses were frequently detected in the tissues of infected monkeys. VP1-145G viruses were detected less frequently and disappeared quickly. Instead, mutants that had a G-to-E mutation at VP1-145 emerged, suggesting that VP1-145E viruses have a replication advantage in the monkeys. This is consistent with our hypothesis proposed in the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018,https://doi.org/10.1128/JVI.00681-18) that the VP1-145G virus is attenuated due to its adsorption by heparan sulfate. Monkeys infected with both viruses produced neutralizing antibodies before the onset of the disease. Interestingly, VP1-145E viruses were more resistant to neutralizing antibodies than VP1-145G virusesin vitro. A small amount of neutralizing antibody raised in the early phase of infection may not be sufficient to block the dissemination of VP1-145E viruses. The different resistance of the VP1-145 variants to neutralizing antibodies may be one of the reasons for the difference in virulence.IMPORTANCEThe contribution of VP1-145 variants in humans is not fully understood. In some studies, VP1-145G/Q viruses were isolated more frequently from severely affected patients than from mildly affected patients, suggesting that VP1-145G/Q viruses are more virulent. In the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018,https://doi.org/10.1128/JVI.00681-18), we showed that VP1-145E viruses are more virulent than VP1-145G viruses in human SCARB2 transgenic mice. Heparan sulfate acts as a decoy to specifically trap the VP1-145G viruses and leads to abortive infection. Here, we demonstrated that VP1-145G was attenuated in cynomolgus monkeys, suggesting that this hypothesis is also true in a nonhuman primate model. VP1-145E viruses, but not VP1-145G viruses, were highly resistant to neutralizing antibodies. We propose the difference in resistance against neutralizing antibodies as another mechanism of EV71 virulence. In summary, VP1-145 contributes to virulence determination by controlling attachment receptor usage and antibody sensitivity.


Sign in / Sign up

Export Citation Format

Share Document