scholarly journals FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION

2015 ◽  
Vol 799 (2) ◽  
pp. 185 ◽  
Author(s):  
Danor Aharon ◽  
Hagai B. Perets
2019 ◽  
Vol 490 (1) ◽  
pp. L67-L70 ◽  
Author(s):  
Alison Sills ◽  
Emanuele Dalessandro ◽  
Mario Cadelano ◽  
Mayte Alfaro-Cuello ◽  
J M Diederik Kruijssen

ABSTRACT The cluster M54 lies at the centre of the Sagittarius dwarf spheroidal galaxy, and therefore may be the closest example of a nuclear star cluster. Either in situ star formation, inspiralling globular clusters, or a combination have been invoked to explain the wide variety of stellar sub-populations in nuclear star clusters. Globular clusters are known to exhibit light element variations, which can be identified using the photometric construct called a chromosome map. In this letter, we create chromosome maps for three distinct age-metallicity sub-populations in the vicinity of M54. We find that the old, metal-poor population shows the signature of light element variations, while the young and intermediate-age metal rich populations do not. We conclude that the nucleus of Sagittarius formed through a combination of in situ star formation and globular cluster accretion. This letter demonstrates that properly constructed chromosome maps of iron-complex globular clusters can provide insight into the formation locations of the different stellar populations.


2014 ◽  
Vol 10 (S312) ◽  
pp. 122-125
Author(s):  
Alessandra Mastrobuono-Battisti ◽  
Hagai B. Perets

AbstractNuclear stellar clusters (NSCs) are dense stellar systems known to exist at the center of most of the galaxies. Some of them host a central massive black hole (MBH). They are though to form through in-situ star formation following the infall of gas to the galactic center and/or because of the infall and merger of several stellar clusters. Here we explore the latter scenario by means of detailed self-consistent N-body simulations, proving that a NSC built by the infall and following merger of stellar clusters shows many of the observed features of the Milky Way NSC. We also explore the possibility that the infalling clusters host intermediate mass black holes (IMBHs). Once decayed to the center, the IMBHs act as massive-perturbers accelerating the relaxation of the NSC, filling the loss-cone and boosting the tidal disruption rate of stars up to a value larger than the observational estimates, therefore providing a cumulative constraint on the existence of IMBHs in NSCs. Studying how the properties of the infalling clusters map to the properties of the resulting NSC, we find that, in the IMBHs-free case, the infall mechanism is able to produce many different observational signatures in the form of age segregation.


2020 ◽  
Vol 495 (2) ◽  
pp. 2247-2264
Author(s):  
Evelyn J Johnston ◽  
Thomas H Puzia ◽  
Giuseppe D’Ago ◽  
Paul Eigenthaler ◽  
Gaspar Galaz ◽  
...  

ABSTRACT Clues to the formation and evolution of nuclear star clusters (NSCs) lie in their stellar populations. However, these structures are often very faint compared to their host galaxy, and spectroscopic analysis of NSCs is hampered by contamination of light from the rest of the system. With the introduction of wide-field integral field unit (IFU) spectrographs, new techniques have been developed to model the light from different components within galaxies, making it possible to cleanly extract the spectra of the NSCs and study their properties with minimal contamination from the light of the rest of the galaxy. This work presents the analysis of the NSCs in a sample of 12 dwarf galaxies in the Fornax Cluster observed with the Multi-Unit Spectroscopic Explorer (MUSE). Analysis of the stellar populations and star formation histories reveal that all the NSCs show evidence of multiple episodes of star formation, indicating that they have built up their mass further since their initial formation. The NSCs were found to have systematically lower metallicities than their host galaxies, which is consistent with a scenario for mass assembly through mergers with infalling globular clusters, whilst the presence of younger stellar populations and gas emission in the core of two galaxies is indicative of in-situ star formation. We conclude that the NSCs in these dwarf galaxies likely originated as globular clusters that migrated to the core of the galaxy that have built up their mass mainly through mergers with other infalling clusters, with gas-inflow leading to in-situ star formation playing a secondary role.


2009 ◽  
Vol 5 (S266) ◽  
pp. 433-437
Author(s):  
I. S. Konstantopoulos ◽  
N. Bastian ◽  
M. Gieles ◽  
H. J. G. L. M. Lamers

AbstractStar clusters are found in all sorts of environments, and their formation and evolution is inextricably linked to the star-formation process. Their eventual destruction can result from a number of factors at different times, but the process can be investigated as a whole through the study of cluster age distributions. Observations of populous cluster samples reveal a distribution following a power law of index approximately −1. In this work, we use M33 as a test case to examine the age distribution of an archetypal cluster population and show that it is, in fact, the evolving shape of the mass detection limit that defines this trend. That is to say, any magnitude-limited sample will appear to follow a dN/dτ = τ−1 relation, while cutting the sample according to mass gives rise to a composite structure, perhaps implying a dependence of the cluster disruption process on mass. In the context of this framework, we examine different models of cluster disruption from both theoretical and observational perspectives.


1982 ◽  
Vol 99 ◽  
pp. 545-549 ◽  
Author(s):  
Jorge Melnick

Giant HII regions as sites of massive star formation.Giant HII regions are the brightest extragalactic emission line objects that can be studied in detail. With diameters of several hundreds of parsecs, these nebulae can be easily resolved out to distances of a few Mpc. Typically 100 or more 0 stars are required to account for the observed ionization of the nebular gas and this implies that the cores of giant HII regions contain populous young star clusters. The stars in these clusters have essentially the same age and chemical composition. Thus, giant HII region cores provide excellent sites where theories of the formation and evolution of massive stars and, in particular, of Wolf-Rayet (WR) stars can be tested.


Author(s):  
Richard de Grijs

Star clusters and their stellar populations play a significant role in the context of galaxy evolution, across space (from local to high redshift) and time (from currently forming to fossil remnants). We are now within reach of answering a number of fundamental questions that will have a significant impact on our understanding of key open issues in contemporary astrophysics, ranging from the formation, assembly and evolution of galaxies to the details of the star-formation process. Our improved understanding of the physics driving star cluster formation and evolution has led to the emergence of crucial new open questions that will most probably be tackled in a systematic way in the next decade.


2017 ◽  
Vol 12 (S330) ◽  
pp. 148-151 ◽  
Author(s):  
Edouard J. Bernard

AbstractWe took advantage of the Gaia DR1 to combine TGAS parallaxes with Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. We present the determination of the completeness within this volume, and compare the resulting SFH with that calculated from the Hipparcos catalogue within 80 pc of the Sun. We also show how this technique will be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ, rather than extrapolating based on the stars from these components that are today in the solar neighbourhood.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 965
Author(s):  
Zoé Perrin ◽  
Nathalie Carrasco ◽  
Audrey Chatain ◽  
Lora Jovanovic ◽  
Ludovic Vettier ◽  
...  

Titan’s haze is strongly suspected to be an HCN-derived polymer, but despite the first in situ measurements by the ESA-Huygens space probe, its chemical composition and formation process remain largely unknown. To investigate this question, we simulated the atmospheric haze formation process, experimentally. We synthesized analogues of Titan’s haze, named Titan tholins, in an irradiated N2–CH4 gas mixture, mimicking Titan’s upper atmosphere chemistry. HCN was monitored in situ in the gas phase simultaneously with the formation and evolution of the haze particles. We show that HCN is produced as long as the particles are absent, and is then progressively consumed when the particles appear and grow. This work highlights HCN as an effective precursor of Titan’s haze and confirms the HCN-derived polymer nature of the haze.


2012 ◽  
Vol 8 (S295) ◽  
pp. 354-357
Author(s):  
Peter H. Johansson

AbstractWe demonstrate that massive simulated galaxies assemble in two phases, with the initial growth dominated by compact in situ star formation, whereas the late growth is dominated by accretion of old stars formed in subunits outside the main galaxy. We also show that 1) gravitational feedback strongly suppresses late star formation in massive galaxies contributing to the observed galaxy colour bimodality that 2) the observed galaxy downsizing can be explained naturally in the two-phased model and finally that 3) the details of the assembly histories of massive galaxies are directly connected to their observed kinematic properties.


Sign in / Sign up

Export Citation Format

Share Document