X-ray and optical characterization of β-FeSi2layers formed by pulsed ion-beam treatment

2001 ◽  
Vol 13 (5) ◽  
pp. L113-L118 ◽  
Author(s):  
R M Bayazitov ◽  
R I Batalov
1997 ◽  
Vol 07 (03n04) ◽  
pp. 265-275
Author(s):  
R. Q. Zhang ◽  
S. Yamamoto ◽  
Z. N. Dai ◽  
K. Narumi ◽  
A. Miyashita ◽  
...  

Natural FeTiO 3 (illuminate) and synthesized FeTiO 3, single crystals were characterized by Rutherford backscattering spectroscopy combined with channeling technique and particle-induced x-ray emission (RBS-C and PIXE). The results obtained by the ion beam analysis were supplemented by the x-ray diffraction analysis to identify the crystallographic phase. Oriented single crystals of synthesized FeTiO 3 were grown under the pressure control of CO 2 and H 2 mixture gas using a single-crystal floating zone technique. The crystal quality of synthesized FeTiO 3 single crystals could be improved by the thermal treatment but the exact pressure control is needed to avoid the precipitation of Fe 2 O 3 even during the annealing procedure. Natural FeTiO 3 contains several kinds of impurities such as Mn , Mg , Na and Si . The synthesized samples contain Al , Si and Na which are around 100 ppm level as impurities. The PBS-C results of the natural sample imply that Mn impurities occupy the Fe sublattice in FeTiO 3 or in mixed phase between ilmenite and hematite.


2008 ◽  
Vol 516 (23) ◽  
pp. 8604-8608 ◽  
Author(s):  
C. Bundesmann ◽  
I.-M. Eichentopf ◽  
S. Mändl ◽  
H. Neumann

2012 ◽  
Vol 1475 ◽  
Author(s):  
Ursula Alonso ◽  
Tiziana Missana ◽  
Miguel Garcia-Gutierrez ◽  
Henar Rojo ◽  
Alessandro Patelli ◽  
...  

ABSTRACTCement-based materials, like concrete and mortar, are widely used in radioactive waste repositories. A deep characterization of these heterogeneous materials, and of their main phases, is necessary to evaluate their capability of retaining critical radionuclides (RN).In this study, the ion beam technique micro- Particle Induced X- Ray Emission (μPIXE) is used to characterize the concrete and mortar used in the Spanish low level waste repository. Two calcium silicate hydrate (CSH) phases with different Ca/Si ratio are also studied, because they are known to be amongst the most relevant phases, formed upon cement hydration, that retain RN. The retention of thorium on the above mention materials, as relevant tetravalent actinide, is also analyzed. Results are compared with Scanning Electron Microscopy- Energy Dispersive X-Ray Spectroscopy (SEM-EDX) analyses.


2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.


1993 ◽  
Vol 300 ◽  
Author(s):  
Tsutomu Iida ◽  
Yunosuke Makita ◽  
Shinji Kimura ◽  
Stefan Winter ◽  
Akimasa Yamada ◽  
...  

ABSTRACTLow energy (100 eV) impinging of carbon (C+) ions was made during molecular beam epitaxy (MBE) of GaAs using combined ion beam and molecular beam epitaxy (CIBMBE) technologies for the growth temperature ( Tg ) between 500 °C and 590 °C. 2 K photoluminescence (PL), Raman scattering and Hall effect measurements were made for the samples. In the PL spectra two specific emissions, “g” and [g-g], were observed which are closely associated with acceptor impurities. PL and Hall effect measurements indicate that C atoms were very efficiently introduced during MBE growth by CIBMBE and were both optically and electrically well activated as acceptors even at Tg=500 °C. The results reveal that defect-free impurity doping without subsequent annealing can be achieved by CIBMBE method.


1996 ◽  
Author(s):  
Etienne Quesnel ◽  
M. Berger ◽  
J. Cigna ◽  
David Duca ◽  
Catherine Pelle ◽  
...  

1988 ◽  
Vol 126 ◽  
Author(s):  
John F. Knudsen ◽  
R. C. Bowman ◽  
P. M. Adams ◽  
R. Newman ◽  
J. P. Hurrell ◽  
...  

ABSTRACTEpitaxial regrowth of deposited amorphous silicon has been previously described utilizing ion implantation amorphization, ion mixing and thermal anneal. This paper evaluates the effects of these process steps on crystalline quality utilizing Rutherford Backscattering (RBS), x-ray diffraction rocking curves and Raman scattering.In situ (during implantation) regrowth results in defective crystallinity. In contrast, when there is no in situ regrowth, the post anneal crystallinity is equivalent by RBS and x-ray evaluation to virgin single crystal wafers. In situ regrowth is most pronounced during the high beam current ion mixing type implants which produce wafer temperatures of about 250°C. The final crystalline quality which results from different sequences of amorphization and ion mixing implants, is strongly dependent upon the amount of in situ regrowth which has occurred. The greater the in situ regrowth the poorer the final crystalline quality.


2017 ◽  
Vol 24 (3) ◽  
pp. 595-599
Author(s):  
Jianpeng Liu ◽  
Xin Li ◽  
Shuo Chen ◽  
Sichao Zhang ◽  
Shanshan Xie ◽  
...  

In the development of full-field transmission X-ray microscopy for basic study in science and technology, a condenser capable of providing intense illumination with high uniformity and stability on tested specimens in order to achieve high-quality images is essential. The latest design of a square-shaped condenser based on diffractive gratings has demonstrated promising uniformity in illumination. This paper describes in more detail the development of such a beam shaper for hard X-rays at 10 keV with regard to its design, manufacture and optical characterization. The effect of the grating profile on the diffracted intensity has been theoretically predicted by numerical simulation using the finite-difference time-domain method. Based on this, the limitations of the grating-based condenser are discussed.


Sign in / Sign up

Export Citation Format

Share Document