The bactericidal effect of silver nanoparticles

2005 ◽  
Vol 16 (10) ◽  
pp. 2346-2353 ◽  
Author(s):  
Jose Ruben Morones ◽  
Jose Luis Elechiguerra ◽  
Alejandra Camacho ◽  
Katherine Holt ◽  
Juan B Kouri ◽  
...  
2020 ◽  
Vol 11 (3) ◽  
pp. 66
Author(s):  
Umar M. Badeggi ◽  
Jelili A. Badmus ◽  
Subelia S. Botha ◽  
Enas Ismail ◽  
Jeanine L. Marnewick ◽  
...  

In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.


2021 ◽  
Vol 6 (1) ◽  
pp. 32-36
Author(s):  
Anh Quoc Le ◽  
Van Phu Dang ◽  
Ngoc Duy Nguyen ◽  
Kim Lan Nguyen Thi ◽  
Kim Lang Vo Thi ◽  
...  

Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by γ-irradiation in ethanol solution of silver ion-zeolite (Ag+/Z) prepared by ion exchange reaction between silver nitrate (AgNO3) and zeolite 4A. The effects of the Ag+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and the average particle size of AgNPs of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~10.000 ppm) and then PP-AgNPs/Z plastics were preapared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PP-AgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96 % on the platic surface. In conclusion, possessing many advantages such as: vigorously antibacterial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 581 ◽  
Author(s):  
Ana Isabel Ribeiro ◽  
Dilara Senturk ◽  
Késia Karina Silva ◽  
Martina Modic ◽  
Uros Cvelbar ◽  
...  

In this study, a low concentration (10 μg·mL−1) of poly(N-vinylpyrrolidone) (PVP)-coated silver nanoparticles (AgNPs) were deposited by spray and exhaustion (30, 70 and 100 °C) methods onto untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 (PA66) fabric. DBD plasma-treated samples showed higher AgNP deposition than untreated ones for all methods. After five washing cycles, only DBD plasma-treated samples displayed AgNPs on the fabric surface. The best-performing method was exhaustion at 30 °C, which exhibited less agglomeration and the best antibacterial efficacy against S. aureus (4 log reduction). For E. coli, the antimicrobial effect showed good results in all the exhaustion samples (5 log reduction). Considering the spray method, only the DBD plasma-treated samples showed some bacteriostatic activity for both strains, but the AgNP concentration was not enough to have a bactericidal effect. Our results suggest DBD plasma may be a low cost and chemical-free method for the preparation of antibacterial textiles, allowing for the immobilization of a very low—but effective—concentration of AgNPs.


2013 ◽  
Vol 7 (3) ◽  
pp. 282-287 ◽  
Author(s):  
V. Lakshmi Praba ◽  
M. Kathirvel ◽  
K. Vallayyachari ◽  
K. Surendar ◽  
M. Muthuraj ◽  
...  

2009 ◽  
Vol 5 (1-4) ◽  
pp. 2-9 ◽  
Author(s):  
Nilda Vanesa Ayala-Núñez ◽  
Humberto H. Lara Villegas ◽  
Liliana del Carmen Ixtepan Turrent ◽  
Cristina Rodríguez Padilla

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Renata Perugini Biasi-Garbin ◽  
Eliane Saori Otaguiri ◽  
Alexandre Tadachi Morey ◽  
Mayara Fernandes da Silva ◽  
Ana Elisa Belotto Morguette ◽  
...  

Streptococcus agalactiae(group B streptococci (GBS)) is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections. This study reported for the first time the effect of eugenol on GBS isolated from colonized women, alone and in combination with silver nanoparticles produced byFusarium oxysporum(AgNPbio). Eugenol showed a bactericidal effect against planktonic cells of all GBS strains, and this effect appeared to be time-dependent as judged by the time-kill curves and viability analysis. Combination of eugenol with AgNPbio resulted in a strong synergistic activity, significantly reducing the minimum inhibitory concentration values of both compounds. Scanning and transmission electron microscopy revealed fragmented cells and changes in bacterial morphology after incubation with eugenol. In addition, eugenol inhibited the viability of sessile cells during biofilm formation and in mature biofilms. These results indicate the potential of eugenol as an alternative for controlling GBS infections.


Sign in / Sign up

Export Citation Format

Share Document