The influences of radiation effects on DC/RF performances of Lg=22 nm gate-all-around nanosheet field-effect transistor

Author(s):  
Yue Ma ◽  
Jinshun Bi ◽  
Sandip Majumdar ◽  
Safdar Mehmood ◽  
Lanlong Ji ◽  
...  

Abstract In this paper, we carried out detailed TCAD simulations to investigate the radiation effects, e.g., total ionizing dose (TID) and single-event effects (SEEs), on direct current (DC) and radio frequency (RF) characteristics of the gate-all-around (GAA) nanosheet field-effect transistor (FET). The simulation model used is composed of 7-layer stacked GAA nanosheet FET with Lg=22 nm, which was implemented in this study. The open current and the drain-induced barrier lowering of the device are ~ 3mA/μm and 47mV/V, respectively. The results indicate that the TID have little influence on the DC and RF characteristics when the transistor is working in an open state. During the SEEs simulation, we considered three incident directions for the high energy particle, including the lateral direction of the channels, the vertical direction of the channels and the top of the channels. The influence of the particle injecting along the lateral and vertical directions of the channels shows stronger relation with the distance from the incident point compared to the influence of the particle from the top. Besides, the general influence of the particle injecting along the lateral directions of the channels is higher than the other two directions. The total injected charge of the particle injecting along the lateral direction, along the vertical direction and from the top are 3 fC, 1.4 fC and 2.1 fC, respectively. As compared to the FinFET, the GAA nanosheet has superior RF performances and less sensitivity to TID effect. This work can provide a guideline for the GAA nanosheet devices in aerospace and avionic RF applications.

2006 ◽  
Author(s):  
Keisuke Horiuchi ◽  
Prashanta Dutta

A field-effect transistor is developed on PDMS microchannel to control flow in microfluidic chips by modifying the surface charge condition. By applying a gate voltage to one side of the microchannel wall, zeta potential at that side is altered, while the zeta potential at the other side is maintained at the original value. This non-uniform zeta potential results in a secondary electroosmotic flow in lateral direction, which is used for flow control in microchannel geometries. The flow control is observed both quantitatively and qualitatively at relatively low voltage (less than 50 [V]), and this local flow control is primarily due to the leakage current through the interface between PDMS and glass layers. To verify the experimental results, a leakage capacitance model is introduced to estimate the modified zeta potential for the straight channel case, and excellent agreement is obtained between the predicted and experimental zeta potential results.


2009 ◽  
Vol 1191 ◽  
Author(s):  
Kwee Guan Eng ◽  
Kristel Fobelets ◽  
Enrique Velazquez-Perez

AbstractA novel field effect transistor, based on the Screen Grid Field Effect Transistor concept, is proposed with an integrated Coulter Counter pore for amplification of the sensing signal. 3D TCAD simulations are performed on the use of the Coulter Counter Field Effect Transistor (CCFET) to detect the Influenza A virus. The gate of the transistor is the pore through which the bioparticles pass. This passage causes a change in the electrostatic conditions of the gate and thus changes the source-drain current, similar to ISFET operation. The structure of the CC-FET is optimised for bio-sensing and multi-particle passage through the gate hole is simulated. TCAD results show that the CC-FET is capable of multi-particle and particle size detection.


2021 ◽  
Author(s):  
Xueke Wang ◽  
Yabin Sun ◽  
Ziyu Liu ◽  
Yun Liu ◽  
Xiaojin Li ◽  
...  

Abstract In this paper, a novel nanotube tunneling field-effect transistor (NT-TFET) with bias-induced electron-hole bilayer (EHBNT-TFET) is proposed for the first time. By the intentional misalignment and an asymmetric bias configuration of the inner-gate and outer-gate, the line tunneling takes place inside the channel, significantly improving the tunneling rate and area. The device principle and performance are investigated by calibrated 3-D TCAD simulations. Compared to the conventional NT-TFET, the proposed EHBNT-TFET exhibits an increased ON-state current (ION) about 57.2 times and a sub-60 mV/dec subthreshold swing for seven orders of magnitude of drain current. Furthermore, the increased ION and reduced gate capacitance achieve improved dynamic performance. Compared with conventional NT-TFET, the intrinsic delay decreased about 142 times is obtained in EHBNT-TFET.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 753
Author(s):  
Junsu Yu ◽  
Sihyun Kim ◽  
Donghyun Ryu ◽  
Kitae Lee ◽  
Changha Kim ◽  
...  

L-shaped tunnel field-effect transistor (TFET) provides higher on-current than a conventional TFET through band-to-band tunneling in the vertical direction of the channel. However, L-shaped TFET is disadvantageous for low-power applications because of increased off-current due to the large ambipolar current. In this paper, a stacked gate L-shaped TFET is proposed for suppression of ambipolar current. Stacked gates can be easily implemented using the structural features of L-shaped TFET, and on- and off-current can be controlled separately by using different gates located near the source and the drain, respectively. As a result, the suppression of ambipolarity is observed with respect to work function difference between two gates by simulation of the band-to-band tunneling generation. Furthermore, the proposed device suppresses ambipolar current better than existing ambipolar current suppression methods. In particular, low drain resistance is achieved as there is no need to reduce drain doping, which leads to a 7% enhanced on-current. Finally, we present the fabrication method for a stacked gate L-shaped TFET.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 847
Author(s):  
Jungmin Hong ◽  
Jaewoong Park ◽  
Jeawon Lee ◽  
Jeonghun Ham ◽  
Kiron Park ◽  
...  

The radiation effects on a multi-nanosheet tunneling-based field effect transistor (NS-TFET) were investigated for a 3-nm technology node using a three-dimensional (3D) technology computer-aided design (TCAD) simulator. An alpha particle was injected into a field effect transistor (FET), which resulted in a drain current fluctuation and caused the integrated circuit to malfunction as the result of a soft-error-rate (SER) issue. It was subsequently observed that radiation effects on NS-TFET were completely different from a conventional drift-diffusion (DD)-based FET. Unlike a conventional DD-based FET, when an alpha particle enters the source and channel areas in the current scenario, a larger drain current fluctuation occurs due to a tunneling mechanism between the source and the channel, and this has a significant effect on the drain current. In addition, as the temperature increases, the radiation effect increases as a result of a decrease in silicon bandgap energy and a resultant increase in band-to-band generation. Finally, the radiation effect was analyzed according to the energy of the alpha particle. These results can provide a guideline by which to design a robust integrated circuit for radiation that is totally different from the conventional DD-FET approach.


Author(s):  
Jongin Cha ◽  
Harim Choi ◽  
Jongill Hong

Abstract We proposed appropriate plasma conditions for hydrogenation of graphene without structural defect formation using ion energy analysis. Graphene sheets were exposed to plasma having H3+ ions with energies of 3.45, 5.35, and 7.45 eV. Only the specimen treated by the plasma with the lowest energy was converted back to graphene by thermal annealing, and the others showed irreversible characteristics because of the vacancy defects generated by high-energy ions. Finally, we demonstrated the reversible characteristic in graphene field-effect transistor using the plasma with appropriate ion energy and Joule heating, indicating that damage induced by plasma was negligible.


Sign in / Sign up

Export Citation Format

Share Document