Screen-Grid Field Effect Transistor for sensing Bio-Molecules

2009 ◽  
Vol 1191 ◽  
Author(s):  
Kwee Guan Eng ◽  
Kristel Fobelets ◽  
Enrique Velazquez-Perez

AbstractA novel field effect transistor, based on the Screen Grid Field Effect Transistor concept, is proposed with an integrated Coulter Counter pore for amplification of the sensing signal. 3D TCAD simulations are performed on the use of the Coulter Counter Field Effect Transistor (CCFET) to detect the Influenza A virus. The gate of the transistor is the pore through which the bioparticles pass. This passage causes a change in the electrostatic conditions of the gate and thus changes the source-drain current, similar to ISFET operation. The structure of the CC-FET is optimised for bio-sensing and multi-particle passage through the gate hole is simulated. TCAD results show that the CC-FET is capable of multi-particle and particle size detection.

2021 ◽  
Author(s):  
Xueke Wang ◽  
Yabin Sun ◽  
Ziyu Liu ◽  
Yun Liu ◽  
Xiaojin Li ◽  
...  

Abstract In this paper, a novel nanotube tunneling field-effect transistor (NT-TFET) with bias-induced electron-hole bilayer (EHBNT-TFET) is proposed for the first time. By the intentional misalignment and an asymmetric bias configuration of the inner-gate and outer-gate, the line tunneling takes place inside the channel, significantly improving the tunneling rate and area. The device principle and performance are investigated by calibrated 3-D TCAD simulations. Compared to the conventional NT-TFET, the proposed EHBNT-TFET exhibits an increased ON-state current (ION) about 57.2 times and a sub-60 mV/dec subthreshold swing for seven orders of magnitude of drain current. Furthermore, the increased ION and reduced gate capacitance achieve improved dynamic performance. Compared with conventional NT-TFET, the intrinsic delay decreased about 142 times is obtained in EHBNT-TFET.


Author(s):  
Thi Luyen Tran ◽  
Thi Thuy Nguyen ◽  
Thi Thu Huyen Tran ◽  
Van Tuan Chu ◽  
Quang Thinh Tran ◽  
...  

2013 ◽  
Vol 85 (12) ◽  
pp. 5641-5644 ◽  
Author(s):  
Sho Hideshima ◽  
Hiroshi Hinou ◽  
Daisuke Ebihara ◽  
Ryosuke Sato ◽  
Shigeki Kuroiwa ◽  
...  

2006 ◽  
Vol 913 ◽  
Author(s):  
Pei W. Ding ◽  
Kristel Fobelets ◽  
Jesus E Velazquez-Perez

AbstractA novel field effect transistor (FET) that uses 3-dimensional (3-D) embedded gate fingers – the Screen-Grid Field Effect Transistor (SGFET) – is proposed. The gating action of the SGFET is based on the design of multiple gating cylinders into the channel region, perpendicular to the current flow. Such configuration allows a full 3-D gate control of the current which improves the device characteristics by increasing the gate to channel coupling. Initial investigations of the SGFET using 3-D TCAD TaurusTM simulation software are presented in this paper. The results indicate that the proposed SGFET offers the possibility of downscaling without degrading the output characteristics. A comparison between the SGFET and both bulk and SOI MOSFETs shows the superior characteristics of the SGFET for low power operation.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 573 ◽  
Author(s):  
Hujun Jia ◽  
Mei Hu ◽  
Shunwei Zhu

An improved ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (IUU-MESFET) is proposed in this paper. The structure is obtained by modifying the ultrahigh upper gate height h of the ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (UU-MESFET) structure, and the h is 0.1 μm and 0.2 μm for the IUU-MESFET and UU-MESFET, respectively. Compared with the UU-MESFET, the IUU-MESFET structure has a greater threshold voltage and trans-conductance, and smaller breakdown voltage and saturation drain current, and when the ultrahigh upper gate height h is 0.1 μm, the relationship between these parameters is balanced, so as to solve the contradictory relationship that these parameters cannot be improved simultaneously. Therefore, the power added efficiency (PAE) of the IUU-MESFET structure is increased from 60.16% to 70.99% compared with the UU-MESFET, and advanced by 18%.


2012 ◽  
Vol 229-231 ◽  
pp. 824-827 ◽  
Author(s):  
Gang Chen ◽  
Xiao Feng Song ◽  
Song Bai ◽  
Li Li ◽  
Yun Li ◽  
...  

A silicon carbide (SiC) vertical channel junction field effect transistor (VJFET) was fabricated based on in-house SiC epitaxial wafer with lift-off trenched and implanted method. Its blocking voltage exceeds 1300V at gate bias VG = -6V and forward drain current is in excess of 5A at gate bias VG = 3V and drain bias VD = 3V. The SiC VJFET device’s current density is 240A/cm2 at VG= 3V and VD = 3V, with related specific on-resistance 8.9mΩ•cm2. Further analysis reveals that the on-resistance depends greatly on ohmic contact resistance and the bonding spun gold. The specific on-resistance can be further reduced by improving the doping concentration of SiC channel epilayer and the device’s ohmic contact.


Sign in / Sign up

Export Citation Format

Share Document