Optimization study on magnetorheological fluid components and process parameters of cluster magnetorheological finishing with dynamic magnetic field for sapphire substrates

2020 ◽  
Vol 29 (11) ◽  
pp. 114009
Author(s):  
Jisheng Pan ◽  
Kun Zheng ◽  
Qiusheng Yan ◽  
Qixiang Zhang ◽  
Jiabin Lu
Author(s):  
Anand Sharma ◽  
M.S. Niranjan

Magnetorheological Finishing (MRF) is one of the precision finishing processes and recently commercialized method for finishing of various materials like optical glasses, metals, non-metals etc. This method utilizes a suspension consisting of a fluid carrier which can be water or oil, both magnetic and non-magnetic particles and stabilizing agents. Rheological behavior of this mixture of magnetorheological (MR) fluid with abrasives changes under the influence of magnetic field which in turn regulates the finishing forces during finishing processes. Present study critically reviews the MRF process used for achieving nano-level finishing of soft materials and the advancements made in this process


2021 ◽  
Vol 14 (06) ◽  
pp. 2151038
Author(s):  
Bingsan Chen ◽  
Cheng Zheng ◽  
Zhongyu Bao ◽  
Chunyu Li ◽  
Dicheng Huang

This study aims to investigate the effect of nonferromagnetic particle content on the properties of the magnetorheological fluid (MRF) under a dynamic magnetic field. A magnetic-induced viscosity calculation model under the temperature field was built. The influence on the viscosity of the MRF made in-house was analyzed by adding different proportions of nonferromagnetic particles, such as glass powder. Experiments show that a certain proportion of glass powder can increase the viscosity of the MRF. When the powder content is less than 10%, viscosity increases as the glass powder content increases. Conversely, viscosity decreases as the glass powder content increases when the content is more than 10% but less than 20%. These results indicate that adding micron glass powder to the MRF can increase the magnetic saturation limit of the MRF under the dynamic magnetic field and improve its settlement resistance by 25.6%.When 10% glass powder is added to the MRF containing 60% iron powder, sedimentation resistance increases by 25.6%. When the magnetic field intensity is 640 mT, the viscosity of the MRF increases by 6.6 times.


2021 ◽  
pp. 251659842110081
Author(s):  
Manjesh Kumar ◽  
Hari Narayan Singh Yadav ◽  
Abhinav Kumar ◽  
Manas Das

Surface quality is the most crucial factor affecting the product lifespan and performance of any component. Most earlier technologies display accuracy in the micrometre or submicrometre range, surface roughness in the nanometre range, and almost no surface defects in the production of optical, mechanical and electronic parts. Such finishing methods incorporate a magnetic field to control the finishing forces using magnetorheological fluid as the polishing medium. Magnetorheological fluid (MR) consists of ferromagnetic and abrasive particles. It is a type of modern intelligent fluid. An optimum selection of magnetorheological fluid constituents and their volume concentration plays an essential role for the ultra-fine finishing of newly developed engineering products. Rheological characteristics of magnetorheological fluid can change rapidly and effortlessly with the support of an activated magnetic field. Traditional finishing methods are comparatively inferior in finishing complex freeform surfaces, due to the lack of controlling finishing forces and limitations of polishing tool movement over the complex freeform contour of the components. There are different types of processes based on the magnetorheological fluid including magnetorheological finishing, magnetorheological abrasive flow finishing, rotational magnetorheological abrasive flow finishing and ball end magnetorheological finishing. This article discusses the development of different types of magnetorheological-fluid-based finishing processes and their modes of operation. The MR fluid devices developed in the last decade are thoroughly reviewed for their working principles, characteristics and applications. This article also highlights the study of rheological characterization of magnetorheological fluid and its applications in different polishing methods appropriate for finishing various complex freeform components.


2021 ◽  
pp. 251659842110157
Author(s):  
Chinu Kumari ◽  
Sanjay Kumar Chak

Magneto-rheological abrasive honing (MRAH) is an unconventional surface finishing technique that relies on abrasives mixed with a unique finishing fluid, which changes its characteristics on magnetic field application. This process imparts nanometric-level surface finish with a significant amount of uniformity. Rotating motion of the workpiece and continuous reciprocation of the finishing fluid in the MRAH process are recognized as the major aspects for adopting this process in finishing non-magnetic materials. The finishing obtained through the MRAH process relies on the workpiece’s material properties and process parameters such as concentration of abrasives in finishing fluid, rotational speed of the workpiece, and magnetic field strength/magnetizing current. To study the efficacy of MRAH process, a parametric study was conducted by performing few experiments on a brass workpiece. Design of experiment approach was adopted to plan the experiments, and the effect of different values of magnetizing current, the concentration of abrasives, and rotational speed on the surface finish were analyzed through the application of analysis of variance (ANOVA). From ANOVA, the rotational speed was found as the most significant parameter with a contribution of 48.90% on % reduction in roughness value (%∇Ra). Around 57% of roughness reduction was obtained at the optimized value of process parameters.


2007 ◽  
Vol 359-360 ◽  
pp. 384-388
Author(s):  
Feng Jun Chen ◽  
Shao Hui Yin ◽  
Jian Wu Yu ◽  
Hitoshi Ohmori ◽  
Wei Min Lin ◽  
...  

According to the sharp rheological characteristics of magnetorheological fluid in the magnetic field, the principle and mechanism of magnetorheological finishing is analyzed. Based on the Preston equation, the Reynolds equation and its boundary conditions, the two-dimensional material removal model is built and simulated. Furthermore, a series of MRF experiments are carried out, and the influence of the immersed depth and material kinds on material removal rate are clarified respectively. The experimental results are compared with the modeling results of material removal rate to confirm the mechanistic model validity.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


Author(s):  
Jia Ji Lee ◽  
Chang Hong Pua ◽  
Misni Misran ◽  
Poh Foong Lee

Objectives: Magnetic drug targeting offers the latest popular alternative option to deliver magnetic drug carriers into targeting region body parts through manipulation of an external magnetic field. However, the effectiveness of using an electromagnetic field to manipulate and directing magnetic particles is yet to be established. Methods: In this paper, a homemade cost-effective electromagnet system was built for the purpose of studying the control and directing the magnetic drug carriers. The electromagnet system was built with four electromagnetic sources and tested the capability in directing the particles’ movement in different geometry patterns. Besides that, the creation of the self-rotation of individual magnetic particle clusters was achieved by using fast switching between magnetic fields. This self-rotation allows the possibility of cell apoptosis study to carry out. The system was constructed with four electromagnets integrated with a feedback control system and built to manipulate a droplet of commercially available iron (II, III) oxide nanoparticles to steer the magnetic droplet along different arbitrary trajectories (square, circle, triangle, slanted line) in 2-dimensional. Results: A dynamic magnetic field of 25 Hz was induced for magnetic nanoparticles rotational effect to observe the cell apoptosis. A profound outcome shows that the declining cell viability of the cell lines by 40% and the morphology of shrinking cells after the exposure of the dynamic magnetic field. Conclusion: The outcome from the pilot study gives an idea on the laboratory setup serves as a fundamental model for studying the electromagnetic field strength in applying mechanical force to target and to rotate for apoptosis on cancer cell line study.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Peng Zhang ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee

A magnetorheological fluid (MRF) is one of many smart materials that can be changed their rheological properties. The stiffness and damping characteristics of MRF can be changed when a magnetic field is applied. This technology has been successfully employed in various low and high volume applications, such as dampers, clutches, and active bearings, which are already in the market or are approaching production. As a result, the sealing performance of MRF has become increasingly important. In this study, the wear properties of seals with MRFs were evaluated by a rotary-type lip seal wear tester. The test was performed with and without a magnetic field. The leakage time was monitored during the tests in typical engine oil conditions. The results showed that the wear resistance of the seal with MRF was decreased under the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document