scholarly journals On interplay of surface tension and inertial stabilization mechanisms in the stable and unstable interface dynamics with the interfacial mass flux

2021 ◽  
Author(s):  
Dan V. Ilyin ◽  
William A. Goddard III ◽  
I.I. Abarzhi ◽  
Snezhana I Abarzhi
Author(s):  
Marcus Herrmann

Turbulent liquid/gas phase interface dynamics are at the core of many applications. For example, in atomizing flows, the properties of the resulting liquid spray are determined by the interplay of fluid and surface tension forces. The resulting dynamics typically span 4–6 orders of magnitude in length scales, making direct numerical simulations exceedingly expensive. This motivates the need for modeling approaches based on spatial filtering or ensemble averaging. In this paper, a dual-scale modeling approach is presented to describe turbulent two-phase interface dynamics in a large-eddy-simulation-type spatial filtering context. To close the unclosed terms related to the phase interface arising from filtering the Navier-Stokes equation, a resolved realization of the phase interface dynamics is explicitly filtered. This resolved realization is maintained on a high-resolution over-set mesh using a Refined Local Surface Grid approach [1] employing an un-split, geometric, bounded, and conservative Volume-of-Fluid method [2]. The required model for the resolved realization of the interface advection velocity includes the effects of sub-filter surface tension, dissipation, and turbulent eddies. Results of the dual-scale model are compared to recent direct numerical simulations of an interface in homogeneous isotropic turbulence [3].


1985 ◽  
Vol 107 (7) ◽  
pp. 319-323 ◽  
Author(s):  
Yoshihisa Enomoto ◽  
Kyozi Kawasaki ◽  
Takao Ohta ◽  
Shigetoshi Ohta

Soft Matter ◽  
2020 ◽  
Vol 16 (34) ◽  
pp. 7904-7915
Author(s):  
Gopal Verma ◽  
Hugo Chesneau ◽  
Hamza Chraïbi ◽  
Ulysse Delabre ◽  
Régis Wunenburger ◽  
...  

A new local, active, fast and contactless strategy based on the optical radiation pressure is developed to characterize thin-film rheology and surface tension.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Zan Wu ◽  
Bengt Sundén ◽  
Lei Wang ◽  
Wei Li

An experimental investigation was performed for convective condensation of R410A inside one smooth tube (3.78 mm, inner diameter) and six microfin tubes (4.54, 4.6 and 8.98 mm, fin root diameter) of different geometries for mass fluxes ranging from 99 to 603 kg m−2s−1. The experimental data were analyzed with updated flow pattern maps and evaluated with existing correlations. The heat transfer coefficient in the microfin tubes decreases at first and then increases or flattens out gradually as mass flux decreases. This obvious nonmonotonic heat transfer coefficient-mass flux relation may be explained by the complex interactions between the microfins and the fluid, mainly by surface tension effects. The heat transfer enhancement mechanism in microfin tubes is mainly due to the surface area increase at large mass fluxes, while liquid drainage by surface tension and interfacial turbulence enhance heat transfer greatly at low mass fluxes.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Sign in / Sign up

Export Citation Format

Share Document