Study of the influence of MoO3 concentration on the chemical structure, physical properties, and radiation absorption prowess of alumino lead borate glasses

2021 ◽  
Author(s):  
Mohammed Sultan Al-Buriahi ◽  
Ziyad Awadh Alrowaili ◽  
Imen Kebaili ◽  
Ateyyah M. AL-Baradi ◽  
Essam Ahmed Ali Abdel Wahab ◽  
...  

Abstract The present study established a glass system with composition of 55B2O3 -30Pb3O4-(15 - x) Al2O3- xMoO3, where  x: (0≤x≤5 mol %) by melt quenching conventional method. The structure of the synthesized samples was examined by XRD and FT-IR techniques. It is found that the molybdenum acts as a modifier and enhances the change between BO3 and BO4 structural units. Increasing MoO3 in the sample improved the glass network compactness and enhanced the coherence of the glass network and the structure stiffening. Some physical parameters were studied with increasing MoO3 content in the samples such as Ri, ri, rp, dB-B average coordination number, number of bonds, field strength of (Mo+3), the floppy modes, the cross-linking density and effective coordination number and found to be enhanced. Increasing MoO3 dopingconcentration from 0 – 5 mol % produced corresponding increase in fast neutron effective removal cross section ΣR from 0.07127 – 0.10825 cm-1, total cross section for thermal neutrons σT from 68.35875 – 105.7526 cm-1, and an increment in the cold neutron scattering cross section. Furthermore, the influence of MoO3 doping in the glasses is such that the stopping powers (Sp) and ranges RCSDA /Rp of electrons, proton, alpha particles, and carbon ion follows the trend: (Sp)BPAM-G1 > (Sp)BPAM-G2 > (Sp)BPAM-G3 >(Sp)BPAM-G4 > (Sp)BPAM-G5, and(RCSDA /Rp)BPAM-G1 > (RCSDA /Rp)BPAM-G2 > (RCSDA /Rp)BPAM-G3 > (RCSDA /Rp)BPAM-G4 > ((RCSDA /Rp)BPAM-G5 respectively. On the other hand, the doping produced no noticeable differences in the equivalent atomic number and the exposure buildup factor of the glasses.

2017 ◽  
Vol 2 (2) ◽  
pp. 53-58 ◽  
Author(s):  
A. El Abd ◽  
Gamal Mesbah ◽  
Nader M. A. Mohammed ◽  
A. Ellithi

2021 ◽  
Vol 11 (21) ◽  
pp. 10168
Author(s):  
Ghada ALMisned ◽  
Huseyin O. Tekin ◽  
Hesham M. H. Zakaly ◽  
Shams A. M. Issa ◽  
Gokhan Kilic ◽  
...  

Characteristics of tellurite-tungstate-antimonate glasses containing heavy metal oxide were investigated in detail using two methods: the MCNPX Monte Carlo code and the Phy-X/PSD platform. The influence of Sm2O3, translocating with TeO2 at ratios of 0.2, 0.5, 0.8, 1, and 1.5 mol% on radiation shielding properties of glasses, was set forth with five glass structures determined according to the (75-x)TeO2-15Sb2O3-10WO3-xSm2O3 glass composition. Densities of the glasses were prepared by doping a low ratio of Sm2O3 that varied between 5.834 and 5.898 g/cm3. Sample densities, which have an important role in determining radiation shielding character, increased depending on the increase in Sm2O3 concentration. Effective removal cross-section (∑R) values against fast neutrons, as well as linear and mass attenuation coefficients, half-value layer, mean free path, variation of effective atomic number against photon energy, exposure, and energy built-up factors, were simulated with the help of these two methods. As a result of these estimates, it can be concluded that values obtained using both methods are consistent with each other. From the obtained values, it can be concluded that the SM1.5 sample containing 1.5 mol% would have the most efficient role in radiation shielding. An increase of Sm2O3 resulted in a significant increase in linear and mass attenuation coefficients and effective removal cross-section values belonging to fast neutrons and, in addition, resulted in a decrease in the half value layer. Doping HMO glasses with Sm2O3 was observed to contribute directly to the development of radiation shielding properties of the glass.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Abdullah Al-Mamun ◽  
S. M. Arifuzzaman ◽  
Sk. Reza-E-Rabbi ◽  
Umme Sara Alam ◽  
Saiful Islam ◽  
...  

AbstractThe perspective of this paper is to characterize a Casson type of Non-Newtonian fluid flow through heat as well as mass conduction towards a stretching surface with thermophoresis and radiation absorption impacts in association with periodic hydromagnetic effect. Here heat absorption is also integrated with the heat absorbing parameter. A time dependent fundamental set of equations, i.e. momentum, energy and concentration have been established to discuss the fluid flow system. Explicit finite difference technique is occupied here by executing a procedure in Compaq Visual Fortran 6.6a to elucidate the mathematical model of liquid flow. The stability and convergence inspection has been accomplished. It has observed that the present work converged at, Pr ≥ 0.447 indicates the value of Prandtl number and Le ≥ 0.163 indicates the value of Lewis number. Impact of useful physical parameters has been illustrated graphically on various flow fields. It has inspected that the periodic magnetic field has helped to increase the interaction of the nanoparticles in the velocity field significantly. The field has been depicted in a vibrating form which is also done newly in this work. Subsequently, the Lorentz force has also represented a great impact in the updated visualization (streamlines and isotherms) of the flow field. The respective fields appeared with more wave for the larger values of magnetic parameter. These results help to visualize a theoretical idea of the effect of modern electromagnetic induction use in industry instead of traditional energy sources. Moreover, it has a great application in lung and prostate cancer therapy.


The 90° cross-section of the reaction 3 1 H( d , n ) 4 2 He has been investigated over the energy range 100 to 200 keV (energy of bombarding triton) using the 200 keV accelerating set of the establishment. Two methods have been used. As a preliminary experiment the yield of alpha-particles from a thick heavy-ice target was measured per unit charge of incident beam, as a function of deuteron energy, and the variation of cross-section deduced from the gradient of this excitation curve and the range energy relation for tritons in heavy water. Secondly, a comparison was made between the yield of alpha-particles from the D-T reaction and the yield of protons from the D-D reaction when a beam containing both deuterons and tritons was passed through a heavy-water vapour target. (The energy loss in this target was calculated as only a few hundred electron volts.) To do this a simultaneous observation was made of the protons and alpha-particles using the same counter. The values obtained for the cross-section have been compared with the resonance formulae given by Bretscher & French (1949) and by Tascbek, Everhart, Gittings, Hemmendinger & Jarvis (1948) and have been found to be in disagreement with formulae of this type. From considerations of the absolute magnitude of the cross-section it has been deduced that no conventional theory postulating reaction at a distance equal to the sum of the nuclear radii (cf. Konopinski & Teller 1948) will be able to explain this reaction. The evidence for a low-energy resonance (Allan & Poole 1949) is thought to be inconclusive.


2010 ◽  
Vol 13 (2) ◽  
pp. 114 ◽  
Author(s):  
Ashok Patel ◽  
Pradeep Vavia

PURPOSE: The present study deals with evaluation of crosslinked poly vinyl alcohol (PVA) as a potential disintegrant. METHODS: Crosslinking of PVA was carried out using glutaraldehyde as a crosslinker, in presence of acidic conditions. The crosslinking reaction was optimized for a) polymer: crosslinker ratio; b) temperature requirement and c) reaction duration. Certain physical parameters of the disintegrant (including sedimentation volume, hydration capacity, specific surface area and bulk and tap density) were determined and compared to the known disintegrants. Characterization was carried out using FT-IR, DSC, XRD, SEM and Photo microscopy studies. The developed excipient was also studied for acute toxicity in rats and found to be safe for oral use. RESULTS: Disintegration property of formed product was compared to known disintegrant (Ac-Di-Sol) and it was found to give better results. The disintegration mechanism of developed disintegrant was postulated based on results obtained from various physical evaluations including: Study of effect of disintegrant concentration, fillers, and hardness, mode of incorporation and method of granulation on disintegration activity. CONCLUSIONS: By changing the condition parameters of well known crosslinking reaction of PVA, we obtained a crosslinked product which had excellent disintegration activity, good flow and optimal tableting properties.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6769
Author(s):  
Hesham M. H. Zakaly ◽  
Antoaneta Ene ◽  
Oyeleke I. Olarinoye ◽  
Samir Y. Marzouk ◽  
Shams H. Abdel-Hafez ◽  
...  

Melt quenching technique is used for preparing glasses with chemical formula (70P2O5)−(16−x)CdO−(14ZnO)−(xEr2O3), (x = 1–6 mol%) . These glasses were named Er1, Er2, Er3, Er4, Er5, and Er6, respectively. Photon buildup factors, fast neutron absorption, and electron stopping of the prepared glasses were examined. Glasses’ density was varied from 3.390 ± 0.003 for the Er1 glass sample to 3.412 ± 0.003 for the Er6 glass sample. The Buildup factor (BUF) spectra have relatively higher values in the Compton Scattering (CS) dominated areas compared to both Photoelectric effect (PE), and Pair Production (PP) dominated energy regions. The highest BUF appeared at the Er atom K-absorption edge, whose intensity increases as the molar concentration of Er2O3 in the glasses increases. The photon absorption efficiency (PAE) of the glasses increases according to the trend (PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6. Fast neutron removal cross-section, FNRC values of the glasses obtained via calculation varied from 0.1045–0.1039 cm−1 for Er1–Er6. Furthermore, the continuous slowing down approximation mode (CSDA) range enhances the kinetic energy of electrons for all glasses. Generally, results revealed that the investigated glasses could be applied for radiation shielding and dosimetric media.


2019 ◽  
Vol 29 ◽  
pp. 1-16
Author(s):  
Rafael Romero Toledo ◽  
Víctor Ruiz Santoyo ◽  
Ulises Zurita Luna ◽  
Gustavo Rangel Porras ◽  
Merced Martínez Rosales

A spheroidal agglomerate γ-Al2O3 adsorbent obtained from pseudoboehmite for effective removal of fluoride from aqueous medium was investigated in the present study. The surface properties were characterized by several techniques: XRD, physisorption of N2, FE-SEM/EDS, 27Al NMR, FT-IR Pyridine adsorption, PZ and particle size. Batch experiments were conducted and they were compared with a commercial activated alumina (AA). The process was carried out at pH 5, 7, and 9, then at 25 and 35 ºC. Batch experimental results indicated that the spheroidal agglomerates of γ-Al2O3 remove up to 15 mg/g with a higher adsorption capacity than AA of 13 mg/g, at pH 5, studied at 25 and 35 °C. The F− adsorption processes in γ-Al2O3 and AA followed the pseudo-first-order kinetics and the Langmuir isotherm. The results showed an adsorbent effective for removal of F−.


2010 ◽  
Vol 81 (4) ◽  
Author(s):  
D. Q. Fang ◽  
Y. G. Ma ◽  
X. Z. Cai ◽  
W. D. Tian ◽  
H. W. Wang

Sign in / Sign up

Export Citation Format

Share Document