Sound-transparent anisotropic media for backscattering-immune wave manipulation

2022 ◽  
Author(s):  
Wei-Wei Kan ◽  
Qiu-Yu Li ◽  
Lei Pan

Abstract The scattering behavior of the anisotropic acoustic medium is analyzed to reveal the possibility of routing acoustic signals through the anisotropic layers with no backscattering loss. The sound-transparent effect of such medium is achieved by independently modulating the anisotropic effective acoustic parameters in a specific order, and experimentally observed in a bending waveguide by arranging the subwavelength structures in the bending part according to transformation acoustics. With the properly designed filling structures, the original distorted acoustic field in the bending waveguide is restored as if the wave travels along a straight path. The transmitted acoustic signal is maintained nearly the same as the incident modulated Gaussian pulse. The proposed schemes and the supporting results could be instructive for further acoustic manipulations such as wave steering, cloaking and beam splitting.

2020 ◽  
Vol 15 (5) ◽  
pp. 729-737
Author(s):  
Gong Chen ◽  
Lei Cai ◽  
Lv Zong ◽  
Yan Wang ◽  
Xin Yuan

Passive acoustic technology (PAT) is an important tool to acquire the passive acoustic signals from marine organisms. In this paper, PAT fish detection is introduced at great length, including the relevant instruments, signal processing methods, and workflow. Focusing on the key tasks of PAT fish detection, the authors proposed a sparse decomposition algorithm that extracts coherent ratio of passive fish acoustic signal, and designed a feature extraction method for that signal based on speech imitation technology. Experimental results demonstrate that the proposed sparse decomposition algorithm can detect fish acoustic signal accurately at low signal-to-noise ratios (SNRs), and the proposed feature extraction method can effectively extract fish acoustic signals from the marine background. The research results shed important new light on the protection and management of fishery resources in the seas and oceans.


2016 ◽  
Vol 16 (6) ◽  
pp. 220-231
Author(s):  
Hong Kun Wang ◽  
Shou Xiang Wang ◽  
Jing Nie

Abstract With the formation of China’s large power grid, the security of the network is particularly important. The contaminant flashover of insulators has a serious impact on the operation safety of a high voltage power network. In this paper, the acoustic signals’ characteristics of the contaminant insulators flashover are analyzed, and, as a result, the correlation between the acoustic signal and the contaminant insulator flashover is established. To experiment with contaminant insulator for three different Equivalent Salt Deposit Densities (ESDD), acoustic signals were collected separately. Then, the contaminant insulators’ acoustic signals of flashover were analyzed by wavelet packet. The characteristics of the signals were obtained, and they can be judged for contaminant flashover warning.


Author(s):  
Таtiana М. Tkachenko ◽  
Yulia H. Pilkevich ◽  
Heorhii M. Rozorinov

The basic sources of contamination and obstruction of reservoirs are cleared not enough sewer water of industrial and communal enterprises, large stock-raising complexes, wastes of production; upcast of water and railway transport; wastes of roughing-out of flax, pesticides and other. Сontaminents, getting in natural reservoirs, result in the quality changes of water, that, mainly, appear in the change of physical properties of water, in the change of chemical composition of water, in a presence floating substances on the surface of water and laying of them on the bottom of reservoirs. The increases of population, expansion of old and origin of new cities considerably increased entering of domestic flows internal reservoirs. Synthetic cleansers that is widely used in the way of life contaminate reservoirs in a yet greater degree. In the total the capacity of waters goes down for oxigenating, activity of bacteria that mineralize organic substances is paralysed. The unfavorable ecological state of many freshwater ecosystems inflicts substantial harm to the fish resources of reservoirs and puts under a threat possibility not only to develop fish industry, conducting fish artificially, but also simply to catch her. All of it stimulate to do events in relation to the improvement of the ecological state of fresh reservoirs. Voice vibrations are the important constituent of the ecological monitoring of the biota state of fresh reservoirs. Information is about formation of sound in a reservoir part of that is activity of fishes turns out by means of acoustic sensors, that farther yields to computer treatment. The modern methods of recognition of fish acoustic patterns are based on the standards of signals, with properties of average estimations, or on comparisons of acoustic signals with a standard. It is shown that for creation of standards, as a rule, executed: previous signal processing, extraction of features of acoustic signal. Acoustic signals that act from movable objects – fishes can change depending on objective external terms and physical state of reservoirs. The hard algorithms of recognition of acoustic patterns are characterized high probability of error. In this connection repressing are adaptive algorithms of recognition of acoustic patterns. In the process of forming of standards clarification of software comes true according to the features of acoustic signal. Realization of process of creation of standards allows to determine the measure of functional readiness of parameters and knowledge base for the decision of recognition tasks of acoustic signals. In the process of recognition the probability terms of the correct comparing are set to the standard, on default of that an algorithm stops to be executed and requires additional studies. It requires creation of standards that reflect the characteristic features of fish signals. Presently for authentication mostly choose such pattern of acoustic signals, as period length of signal fundamental wave. It can be determined or by the search of maximal value in an autocorrelation function, or by the search of minimum value in the function of mean value of difference of signal amplitudes, or by the search of difference of two maximal values in the sequence of going into detail wavelet-coefficients. It is shown that for the tasks of recognition of fish acoustic patterns, most exact and requiring the least studies there is presentation of acoustic signal as a set of sign vectors of frames. In detail methodologies of the period selection of fundamental wave of acoustic signal were analysed: SIFT, EFT-А and EFT-WT. Methodology of EFT-WT is characterized absence of the thresholds set in good time; by the rapid search of period of fundamental wave; by absence of dependence on a noise-level, as a certain range of frequencies is investigated. At the same time calculable complication of wavelet transform is relatively high, in this connection it is necessary optimization of calculation algorithms.


2019 ◽  
Vol 8 (3) ◽  
pp. 2012-2016

This paper presents a novel technique for calculation of attenuation of acoustic signals in the materials in underwater channel. A laboratory procedure and algorithms have been developed for finding attenuation. In many applications like sonar signal processing acoustic signal attenuation in the dome or in an enclosure are required to be known. Finding the actual attenuation while signal passes through the materials is very useful in calculating the precise power transmitted through the enclosures. The attenuation in materials mainly dependent on type of material, signal frequency and launch angle of the signal. A proper procedure has been presented in this paper


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1153 ◽  
Author(s):  
Antoni Hernández-Fernández ◽  
Iván G. Torre ◽  
Juan-María Garrido ◽  
Lucas Lacasa

In this work we consider Glissando Corpus—an oral corpus of Catalan and Spanish—and empirically analyze the presence of the four classical linguistic laws (Zipf’s law, Herdan’s law, Brevity law, and Menzerath–Altmann’s law) in oral communication, and further complement this with the analysis of two recently formulated laws: lognormality law and size-rank law. By aligning the acoustic signal of speech production with the speech transcriptions, we are able to measure and compare the agreement of each of these laws when measured in both physical and symbolic units. Our results show that these six laws are recovered in both languages but considerably more emphatically so when these are examined in physical units, hence reinforcing the so-called ‘physical hypothesis’ according to which linguistic laws might indeed have a physical origin and the patterns recovered in written texts would, therefore, be just a byproduct of the regularities already present in the acoustic signals of oral communication.


2016 ◽  
Vol 13 (10) ◽  
pp. 6654-6661
Author(s):  
Qingying Zhao ◽  
Min Li ◽  
Jun Luo ◽  
Hanqing Wang ◽  
Jinge Cao

This paper describes a nanorobot control algorithm designed for approaching tumor tissue in local blood vessel for targeted drug delivery. The algorithm coordinates nanorobots’ movements through use of two types of chemical molecules, an acoustic signal and velocity characteristic of blood fluid. After detecting the chemical molecules released by cancer cells, a nanorobot moves toward the area of higher concentration of the molecule and releases another chemical molecule which alerts others to aggregate to the target. When nanorobots detect acoustic signals emitted by nanorobots reaching target, their paths will be planned according to intensity of acoustic signals and velocity characteristic of blood fluid. The simulations show that compared with the existed approaches, the proposed algorithm results in an increase of nanorobots’ population and a decrease of cost time to reach target site with the help of acoustic signals and velocity characteristic. As a whole, the results obtained suggest that the algorithm presented in this paper is a better strategy for approaching tumor tissue in local blood vessel by nanorobots.


1993 ◽  
Vol 10 (4) ◽  
pp. 503-508 ◽  
Author(s):  
Robert O. Gjerdingen

If one hypothesizes rhythmic perception as a process employing oscillatory circuits in the brain that entrain to low-frequency periodicities in the neural firings evoked by an acoustic signal, then among the conceptually purest probes of those oscillatory circuits would be acoustic signals with only simple sinusoidal periodicities in the appropriate frequency range (perhaps from 0.3 Hz to 20 Hz). Such signals can be produced by the low- frequency amplitude modulation of an audible carrier wave by one or more sinusoids. The resulting rhythms are "smooth" in that their amplitude envelopes are smoothly varying with no obvious points of onset or offset. Because preliminary experiments with smooth rhythms have produced some unexpected results, and because smooth rhythms can be precisely controlled and varied (including, for example, the digital filtering of their Fourier components in the frequency domain), they are proposed as versatile stimuli for studies in rhythmic perception.


2015 ◽  
Vol 719-720 ◽  
pp. 1019-1022
Author(s):  
Lei Lei Deng

In order to extract useful information of underwater acoustic signals from noise, preprocessing steps are unavoidable. In view of trend and transient pulse interference exited in the original data inevitability, morphological filter method is applied and analyzed in this paper. Data processing results show that the morphological filter method is superior to the traditional filter method.


Author(s):  
М. V. Buhaiov ◽  
V. V. Branovytskyi ◽  
Y. O. Khorenko

One of the most important components of counteracting small unmanned aerial vehicles is their reliable detection. You can use propeller noise to detect such objects at short distances. An energy or harmonic detector is used to receive unmanned aerial vehicles acoustic emission. At low signal-to-noise ratios , which is most common in practice, the harmonic detector provides a higher probability of detection compared to energy. The principle of the harmonic detector is based on spectral analysis of acoustic signals. A mathematical model of the acoustic signal of an aircraft-type unmanned aerial vehicles is proposed. It is shown that at short time intervals (tens of milliseconds) such signals can be considered as stationary and for its analysis can be used known methods of spectral estimation. Nonparametric, parametric and subspace methods of spectral estimation are considered for processing of acoustic emission of unmanned aerial vehicles. To conduct a comparative analysis of different methods of spectral estimation, a statistical quality index was used, which can be calculated as a variation of the estimation of power spectral density. This index characterizes the method of spectral estimation in terms of frequency resolution and the ability to detect harmonic components of the signal into noise and not create interference that exceeds the amplitude of the signal. As a result of researches it was established that at high signal-to-noise ratios parametric methods are more effective in comparison with nonparametric. However, such a statement will be valid only if the correct order of the model. It is shown that the use of spatial methods is impractical for the analysis of acoustic signals of unmanned aerial vehicles. The use of the value of the statistical quality indicator as a threshold for deciding on the presence or absence of the acoustic signal of the unmanned aerial vehicles in the adopted implementation and its further processing should be used at SNR values greater than 5 dB.


2011 ◽  
Vol 48-49 ◽  
pp. 1319-1322
Author(s):  
Zhi Hao Jin ◽  
Jia Zhao ◽  
Wen Jin ◽  
Bang Chun Wen

Combine wavelet function “db10”with MATLAB band energy scale decomposition method, studied the characteristics of acoustic signals on different rubbing pair at low speed situations. The results indicate that acoustic signal generated by rubbing fault has obvious sudden; In general, the characteristics of acoustic signals induced by different rubbing pair is basically similar, so the characteristics of rubbing fault affected by rubbing pair of material is very small; The fault charac-teristic frequency is 328-420KHZ , 223-300KHZ at low speed.


Sign in / Sign up

Export Citation Format

Share Document