scholarly journals Effect of Temperature and Residence Time Torrefaction Palm Kernel Shell On The Calorific Value and Energy Yield

2020 ◽  
Vol 1428 ◽  
pp. 012010 ◽  
Author(s):  
M Dirgantara ◽  
Karelius ◽  
B T Cahyana ◽  
K G Suastika ◽  
A RM Akbar
2021 ◽  
Author(s):  
Syazmi Zul Arif Hakimi Saadon ◽  
Noridah Osman ◽  
Moviin Damodaran ◽  
Shan En Liew

Abstract Interest in torrefaction has improved along the recent years and it has been studied extensively as a mean of preparing solid fuels. Biomass to be considered as a renewable source of energy must endeavor improvement continuously and where it is more sustainable going forward in which can come from waste product, wild and cultivated plant. The aim of this study is to investigate the effect of temperature and residence time of wild Napier grass and Oil palm petiole from waste. The torrefied samples were derived by pyrolysis reactor mimicking torrefaction procedure. The temperature parameter ranges between 220 and 300 ℃ while residence time parameter is from 10 minutes to 50 minutes of reaction. It was found that as temperature and time increasing, moisture content and amount of O and H atoms decreases as well as both mass and energy yield, but calorific value and the energy density increase along with both two parameters. Between the two parameters, the temperature variation shows more significant changes to the torrefied samples as compared time. The optimized temperature and time are found to be 260 ℃ and 30 minutes, respectively. Remarkably, the usage of pyrolyzer as torrefaction reaction has proved to be a good option since they share similar characteristics while can also produce product with similar properties reflecting torrefaction process.


2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


Author(s):  
Deana Qarizada ◽  
Erfan Mohammadian ◽  
Azil Bahari Alias ◽  
Humapar Azhar Rahimi ◽  
Suriatie Binti Mat Yusuf

Distillation is an essential thermo chemical process; it mainly depends on temperature which affects mostly the product yield and composition. The aim of this research is to investigate the effect of temperature on the characterization of bio-oil liquid fraction derived from palm kernel shell (PKS) bio-oil. The temperatures were 100 °C and 140°C. The higher heating value (HHV) obtained were 28.6MJ/Kg and 31.5MJ/Kg for bio-oil fraction 100°C and 140°C respectively. The GC- MS analysis determined that phenol is the dominant product in bio-oil fractions.


Author(s):  
Abd Halim Shamsuddin ◽  
Mohd Shahir Liew

Malaysia has about 4.2 million hectares of oil palm plantation. The palm oil milling industry has over 400 mills throughout the country with total milling capacity of 82 million tonnes fresh fruit bunches, FFB, per year. In 2003, the amount of FFB processed was 67 million tonnes, which generated solid wastes in the forms of empty fruit bunches, EFB (19.43 million tonnes), mesocarp fibres (12.07 million tonnes) and palm kernel shell (4.89 million tonnes). These wastes has moisture content of 60–70% for EFB and mesocarp fibre, and 34–40% for palm kernel shell, and calorific value of 5.0 – 18.0 Mj/kg. A processing technology was developed to process these low quality biomass fuels into high quality solid biofuel briquettes with moisture content in the range 8–12%. Depending on the formulations and the sources of the raw biomass, the final solid biofuel briquettes can have calorific values in the range of 18–25 Mj/kg. The production of the solid biofuel briquettes would be an attractive financial advantage for full exploitation of biomass fuels. Logistic problems due to the disperse nature of the biomass resources would significantly be addressed.


2021 ◽  
Vol 407 ◽  
pp. 121-127
Author(s):  
Nattarat Chutwiboonkun ◽  
Sukum Kositchaimongkol ◽  
Nattawut Tharawadee

Torrefaction process is the innovation to improve the properties of biomass. Residence time is one of the parameters that affects the properties of torrefied biomass. The residence time of a rotary kiln is the time of biomass drop into the cylinder until getting out of the cylinder. So, the propose of this study is the effect of lifters, inclination angle and rotational speed on the residence time of a rotary kiln for the torrefaction process. Palm kernel shell was used in this research. Palm kernel was chopped and minced to reduce size. The rotary kiln (0.3 meters diameter 6 meters in length) was used in this research. The number of lifters in this research were 0, 1 and 2. The rotational speed were 1, 2 and 3 rpm. The inclination angle was 1, 3 and 5 degrees. The hopper was used for the feeding system. The time was collected from biomass drop into the cylinder until getting out of the cylinder. The results reveal that the number of lifters, rotational speed and inclination angle affects the residence time of the rotary kiln. The residence time of rotary kiln was an increase when the number of lifters increase. The residence time of the rotary kiln was decreased when the rotational speed and inclination angle increase. It can be concluded that the least residence time of rotary kiln was 86.94 minute at 0 lifters, 3 rpm and 5 degrees. The most residence time was 9.22 minute at 2 lifters, 1 rpm and 1 degree.


2012 ◽  
Vol 626 ◽  
pp. 615-619 ◽  
Author(s):  
B.Y. Lim ◽  
Salmah Husseinsyah ◽  
Pei Leng Teh

The rheological properties of the low density polyethylene (LDPE)/palm kernel shell (PKS) composites were studied by using a melt flow indexer. The silane treated and untreated composites were investigated. Both of the composites were further varied by amount of filler loading from 10 to 40 php. The testing temperature of composites varied from 180 to 210 °. It was found out that the MFI values of the composites increased with temperature but decreased with a rise of filler loading. The treated LDPE/PKS composites exhibited lower MFI values compared to untreated composites, which indicated the increase of viscosity. Thus, a better adhesion between the LDPE matrix and PKS was established. The effect of temperature on the viscosity of LDPE/PKS composites was found to obey the Arrhenius equation. The results showed that the activation energy of the composites increased with the increase of filler loading. However, at similar filler loading, the silane treated composites showed lower activation energy compared to untreated composites, leading to the reduction of their temperature sensitivity.


2014 ◽  
Vol 625 ◽  
pp. 616-619
Author(s):  
Ali Norizan ◽  
Yoshimitsu Uemura ◽  
Hafizah Ahmad Afif ◽  
Noridah Osman ◽  
Wissam N. Omar ◽  
...  

This study investigates the effect of pyrolysis temperature on the yields of char, organic compounds, water and gas. Fast pyrolysis was carried out in a fluidized bed reactor of 108 mm in internal diameter operated at 400, 450, 500 and 550 °C with nitrogen gas with flow rate of 25 L(NTP)/min. In specific the effect of temperature on the yields of known and unknown organics in bio-oil is discussed. For higher total organics, 500 oC was favorable. But higher phenol and acetic acid yields, 450 oC was preferable. The major organics include acetic acid, phenol and furfural. The minor ones include 2-methylphenol, 4-methylphenol, 4-methylnaphthalene, benzene, toluene and THF.


2020 ◽  
Author(s):  
UCHE ONOCHIE ◽  
HENRY EGWARE ◽  
FRANCIS ONOROH

Abstract In this study, the effect of elaeis guineensis in the production of pellets from coal was investigated. Coal and elaeis guineensis were collected and pulverised. A locally fabricated screw press machine was used to produce three types of pellets in the same ratio (i.e. 80C:20R) while the fourth pellet is100% coal. These pellets are: coal palm kernel shell (CPKS), coal palm fibre (CPF), coal empty fruit bunch (CEFB) as well as raw coal (C). Thereafter, the pellets were sundried and characterised base on ASTM Standards. These include the calorific value, proximate and ultimate analysis. From the results, it was observed that the calorific value of CPKS, CPF, CEFB and C were 28033.38 kJ/kg, 27695.4 kJ/kg, 27687.5 kJ/kg and 22021.99 kJ/kg respectively. The sulphur content of the pellets is 0.7%, 0.71%, 0.73% and 0.76% respectively. The results revealed that the 100% coal pellet has the lowest percentage CV and the highest percentage sulphur and ash content. Essentially, this study has been able to established that elaeis guineensis residues is a good energy source for enhancing the calorific value of coal and also has the tendency of reducing the sulphur and ash contents of coal especially the PKS.


2019 ◽  
Vol 13 (4) ◽  
pp. 5791-5803 ◽  
Author(s):  
R. Ahmad ◽  
M. A. M. Ishak ◽  
K. Ismail ◽  
N. N. Kassim

In this study, microwave irradiation pretreatment of palm kernel shell (PKS) and Mukah Balingian (MB) coal was carried out in a fixed bed reactor. The effect of microwave power and processing time was investigated on pretreated PKS and MB coal characteristic. Then, the co-gasification of microwave pretreated PKS and MB coal was conducted to examine the effect of product yield and gases composition. The results showed that, the characteristics of pretreated sample was improved with increasing microwave power and processing time. The volatile matter, oxygen content and O/C ratio of pretreated sample decreased, while the calorific value, fixed carbon and carbon content of pretreated sample increased with increasing microwave power. The carbon content of pretreated PKS was closed to the untreated MB coal with comparable calorific value was obtained. The microwave power level of 450 W and processing time of 8 min were appropriate to upgrade the PKS and MB coal for co-gasification. The pretreated sample produced higher gas yield and lower tar and char yield than the untreated sample during co-gasification. This result was due to low moisture and oxygenated compound of pretreated feedstock made it appropriate to be converted in co-gasification. Moreover, co-gasification of pretreated sample produced the higher H2+CO and CH4 and lower CO2 composition than untreated sample. Thus, it can be concluded that the microwave irradiation pretreatment on PKS and MB coal performed the significant impact on the product distribution and composition during the co-gasification.


Sign in / Sign up

Export Citation Format

Share Document