scholarly journals The Study of the 22Ne(α,γ)26Mg Reaction at LUNA

2020 ◽  
Vol 1643 (1) ◽  
pp. 012061
Author(s):  
D. Piatti

Abstract The 22Ne(α,γ)26Mg reaction is the competitor of the 22Ne(α,γ)25Mg reaction, an effective neutron source for element synthesis through s-process in massive and AGB stars. Currently the ratio between the rates of these two reactions is poorly constrained because of the high uncertainty affecting the 22Ne(α,γ)26Mg reaction rate. Indeed a wide range of values for the 395 keV resonance strength (10−15 - 10−9 eV) is reported in literature, all of them from indirect measurements. The present study represents the first direct measurement which was performed at the ultra-low background LUNA laboratory. An high efficiency detector was installed at the gas target beamline of LUNA 400kV accelerator and the 99% enriched in 22Ne neon gas was irradiated with a 399.9 keV α-beam. No significant signal was detected in the 22Ne(α,γ)26Mg region of interest, thus an upper limit for the 395 keV resonance strength was estimated. A new campaign was completed in August 2019 with an improved setup and some details are reported here.

2020 ◽  
Vol 227 ◽  
pp. 02004
Author(s):  
Eliana Masha ◽  

The 22Ne( α , γ)26Mg reaction competes with the 22Ne(α, n)25Mg reac-tion which is the main source of neutrons for the s-process in low-mass Asymptotic Giant Branch (AGB) and massive stars. The 22Ne( α , γ)26Mg reaction rateis affected by a high uncertainty mainly due to the poorly constrained 395 keVresonance which has been studied only indirectly leading to a wide range of pos-sible values for its resonance strength (10-14 - 10-9 eV). The present study represents the direct measurement of the 395 keV resonance of the 22Ne( α , γ)26Mgreaction at LUNA (Laboratory for Underground Nuclear Astrophysics), located at Gran Sasso National Laboratory. Here, the experimental campaigns, setupand some very preliminary results are presented.


2019 ◽  
Author(s):  
Michael Oschmann ◽  
Linus Johansson Holm ◽  
Oscar Verho

Benzofurans are everywhere in nature and they have been extensively studied by medicinal chemists over the years because of their chemotherapeutic and physiological properties. Herein, we describe a strategy that can be used to access elaborate benzo-2-carboxamide derivatives, which involves a synthetic sequence of 8-aminoquinoline directed C–H arylations followed by transamidations. For the directed C–H arylations, Pd catalysis was used to install a wide range of aryl and heteroaryl substituents at the C3 position of the benzofuran scaffold in high efficiency. Directing group cleavage and further diversification of the C3-arylated benzofuran products were then achieved in a single synthetic operation through the utilization of a two-step transamidation protocol. By bocylating the 8-aminoquinoline amide moiety of these products, it proved possible to activate them towards aminolysis with different amine nucleophiles. Interestingly, this aminolysis reaction was found to proceed efficiently without the need of any additional catalyst or additive. Given the high efficiency and modularity of this synthetic strategy, it constitute a very attractive approach for generating structurally-diverse collections of benzofuran derivatives for small molecule screening.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2021 ◽  
Vol 11 (6) ◽  
pp. 522
Author(s):  
Feng-Yu Liu ◽  
Chih-Chi Chen ◽  
Chi-Tung Cheng ◽  
Cheng-Ta Wu ◽  
Chih-Po Hsu ◽  
...  

Automated detection of the region of interest (ROI) is a critical step in the two-step classification system in several medical image applications. However, key information such as model parameter selection, image annotation rules, and ROI confidence score are essential but usually not reported. In this study, we proposed a practical framework of ROI detection by analyzing hip joints seen on 7399 anteroposterior pelvic radiographs (PXR) from three diverse sources. We presented a deep learning-based ROI detection framework utilizing a single-shot multi-box detector with a customized head structure based on the characteristics of the obtained datasets. Our method achieved average intersection over union (IoU) = 0.8115, average confidence = 0.9812, and average precision with threshold IoU = 0.5 (AP50) = 0.9901 in the independent testing set, suggesting that the detected hip regions appropriately covered the main features of the hip joints. The proposed approach featured flexible loose-fitting labeling, customized model design, and heterogeneous data testing. We demonstrated the feasibility of training a robust hip region detector for PXRs. This practical framework has a promising potential for a wide range of medical image applications.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 233
Author(s):  
Ambra Nanni ◽  
Sergio Cristallo ◽  
Jacco Th. van Loon ◽  
Martin A. T. Groenewegen

Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Elena Cáceres ◽  
Rodrigo Castillo Vásquez ◽  
Alejandro Vilar López

Abstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander D. Taylor ◽  
Qing Sun ◽  
Katelyn P. Goetz ◽  
Qingzhi An ◽  
Tim Schramm ◽  
...  

AbstractDeposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Tommy R. Powell ◽  
James P. Szybist ◽  
Flavio Dal Forno Chuahy ◽  
Scott J. Curran ◽  
John Mengwasser ◽  
...  

Modern boosted spark-ignition (SI) engines and emerging advanced compression ignition (ACI) engines operate under conditions that deviate substantially from the conditions of conventional autoignition metrics, namely the research and motor octane numbers (RON and MON). The octane index (OI) is an emerging autoignition metric based on RON and MON which was developed to better describe fuel knock resistance over a broader range of engine conditions. Prior research at Oak Ridge National Laboratory (ORNL) identified that OI performs reasonably well under stoichiometric boosted conditions, but inconsistencies exist in the ability of OI to predict autoignition behavior under ACI strategies. Instead, the autoignition behavior under ACI operation was found to correlate more closely to fuel composition, suggesting fuel chemistry differences that are insensitive to the conditions of the RON and MON tests may become the dominant factor under these high efficiency operating conditions. This investigation builds on earlier work to study autoignition behavior over six pressure-temperature (PT) trajectories that correspond to a wide range of operating conditions, including boosted SI operation, partial fuel stratification (PFS), and spark-assisted compression ignition (SACI). A total of 12 different fuels were investigated, including the Co-Optima core fuels and five fuels that represent refinery-relevant blending streams. It was found that, for the ACI operating modes investigated here, the low temperature reactions dominate reactivity, similar to boosted SI operating conditions because their PT trajectories lay close to the RON trajectory. Additionally, the OI metric was found to adequately predict autoignition resistance over the PT domain, for the ACI conditions investigated here, and for fuels from different chemical families. This finding is in contrast with the prior study using a different type of ACI operation with different thermodynamic conditions, specifically a significantly higher temperature at the start of compression, illustrating that fuel response depends highly on the ACI strategy being used.


Sign in / Sign up

Export Citation Format

Share Document