scholarly journals On instability of three-dimensional dynamic equilibrium states of self-gravitating Vlasov-Poisson gas

2021 ◽  
Vol 1730 (1) ◽  
pp. 012069
Author(s):  
Yu G Gubarev ◽  
S Sun
2012 ◽  
Vol 548 ◽  
pp. 511-515
Author(s):  
Jian Hui Sun ◽  
Long Jiang ◽  
Wan Shun Wang ◽  
Chen Lin Xiong ◽  
Zhao Hui Zhu

Through the field test of Mayanpo slope at Xiangjiaba Hydropower Station, external deformation, deep deformation, groundwater level and stability of the slope with weak interlayer are analyzed in this paper. The results show that: ① displacement deformation increases with time and decreases with increasing depth. Changes of displacement can be divided into three stages: deformation rapidly increases in the early, and slowly increases in the medium, and becomes gradually stable in the later. Changing rate of displacement decreases with time, and the rate can also be divided into three stages, basically consistent with the displacement changing stage; ② a certain thickness of weak interlayer and evident dislocation exists in slope strata. Dislocation rate first increases and then decreases until basically stable, and local fluctuation is mainly affected by rainfall and dynamic equilibrium adjustment of the slope internal deformation; ③based on the penalty function contact of pile soil and the surface of rock mass, the three-dimensional numerical model of coupling of seepage and strain has been established, and through analyzing and comparing with field test data, it is verified that the model is feasible in the study on slope deformation; ④ through stability analysis of Mayanpo slope by strength reduction FEM, stability coefficient is 1.72.


2013 ◽  
Vol 288 (38) ◽  
pp. 27607-27618 ◽  
Author(s):  
Meng-Lun Hsieh ◽  
Tamara D. James ◽  
Leslie Knipling ◽  
M. Brett Waddell ◽  
Stephen White ◽  
...  

Gene expression can be regulated through factors that direct RNA polymerase to the correct promoter sequence at the correct time. Bacteriophage T4 controls its development in this way using phage proteins that interact with host RNA polymerase. Using a process called σ appropriation, the T4 co-activator AsiA structurally remodels the σ70 subunit of host RNA polymerase, while a T4 activator, MotA, engages the C terminus of σ70 and binds to a DNA promoter element, the MotA box. Structures for the N-terminal (NTD) and C-terminal (CTD) domains of MotA are available, but no structure exists for MotA with or without DNA. We report the first molecular map of the MotA/DNA interaction within the σ-appropriated complex, which we obtained by using the cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). We conjugated surface-exposed, single cysteines in MotA with FeBABE and performed cleavage reactions in the context of stable transcription complexes. The DNA cleavage sites were analyzed using ICM Molsoft software and three-dimensional physical models of MotANTD, MotACTD, and the DNA to investigate shape complementarity between the protein and the DNA and to position MotA on the DNA. We found that the unusual “double wing” motif present within MotACTD resides in the major groove of the MotA box. In addition, we have used surface plasmon resonance to show that MotA alone is in a very dynamic equilibrium with the MotA element. Our results demonstrate the utility of fine resolution FeBABE mapping to determine the architecture of protein-DNA complexes that have been recalcitrant to traditional structure analyses.


1991 ◽  
Vol 69 (7) ◽  
pp. 1090-1099 ◽  
Author(s):  
Koichi Iinuma

A new formulation for the analysis of low density multiple-ion swarms drifting, diffusing, and inter-reacting in a neutral gas is proposed on a transport theory basis. A set of coupled three-dimensional transport equations for an arbitrary number of ion species, which governs the number densities of the ion swarms as functions of time and position coordinates, is exactly solved using a Fourier transform in a matrix representation. A picture of dynamic equilibrium state for hypothetical four ion swarms in a neutral gas is numerically obtained. Also, experimental data of transport coefficients and reaction rates for (Li+, Li+•N2, Li+•2N2)flN2 system are examined in a complete reversible cyclic reaction scheme and compared with a Green's function method. The initial and boundary conditions, the analysis in gas mixtures, and the inelastic process associated with the present formulation are briefly discussed. Key words: ion swarm, cluster ion, transport equation, ion–molecule reaction.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Massimo Rundo ◽  
Giorgio Altare

The paper describes the modeling and the experimental tests of a variable displacement vane pump for engine lubrication. The approach used for the simulation has involved three-dimensional (3D) commercial tools for tuning a zero-dimensional (0D) customized model implemented in the LMS Amesim® environment. Different leakage paths are considered and the axial clearances are variable to take into account the deformation of the pump cover, calculated through a finite element analysis with ANSYS. The vane tip clearances are calculated as function of the dynamic equilibrium equation of the vanes. The displacement control takes into account the internal forces on the stator due to the pressure in all variable chambers and to the contact force exerted by the vanes. The discharge coefficients in the resistive components have been tuned by means of a complete 3D transient model of the pump built with PumpLinx®. The tuned 0D model has been proved to be reliable for the determination of the steady-state flow-speed and flow-pressure curves, with a correct estimation of the internal leakages and of the pressure imposed by the displacement control. The pump has been also tested using a simplified circuit, and a fair agreement has been found in the evaluation of the delivery pressure ripple.


1998 ◽  
Vol 65 (4) ◽  
pp. 820-828 ◽  
Author(s):  
E. Carrera

This paper presents the dynamic analysis of multilayered plates using layer-wise mixed theories. With respect to existing two-dimensional theories at the displacement formulated, the proposed models a priori fulfill the continuity of transverse shear and normal stress components at each interface between two adjacent layers. A Reissner’s mixed variational equation is employed to derive the differential equations, in terms of the introduced stress and displacement variables, that govern the dynamic equilibrium and compatibility of each layer. The continuity conditions at the interfaces are used to write corresponding equations at multilayered level. Related standard displacement formulations, based on the principle of virtual displacements, are given for comparison purposes. Numerical results are presented for the free-vibration response (fundamental and higher order frequencies are calculated) of symmetrically and unsymmetrically laminated cross-ply plates. Several comparisons to three-dimensional elasticity analysis and to some available results, related to both layer-wise and equivalent single-layer theories, have shown that the presented mixed models: (1) match the exact three-dimensional results very well and (2) lead to a better description in comparison to results related to other available analysis.


1976 ◽  
Vol 1 (15) ◽  
pp. 89 ◽  
Author(s):  
J.W. Kamphuis ◽  
R.M. Myers

A three dimensional facility for testing dynamic equilibrium and artificial nourishment of beaches was developed. Specific conclusions are drawn with respect to trap location and re-reflection of waves. It was found that dynamic equilibrium is achieved faster in three dimensional tests than in previous two dimensional work and that the profiles are eroding profiles rather than potential (limit) profiles. It was seen that profiles develop around the offshore bar which is shaped early in the experiments. Also the depth of the summer step was found predictable from critical shear stress considerations. Finally, onshore nourishment of eroding beaches was found to be successful.


2017 ◽  
Vol 28 (14) ◽  
pp. 1959-1974 ◽  
Author(s):  
Leanna M. Owen ◽  
Arjun S. Adhikari ◽  
Mohak Patel ◽  
Peter Grimmer ◽  
Natascha Leijnse ◽  
...  

The ability of cells to impart forces and deformations on their surroundings underlies cell migration and extracellular matrix (ECM) remodeling and is thus an essential aspect of complex, metazoan life. Previous work has resulted in a refined understanding, commonly termed the molecular clutch model, of how cells adhering to flat surfaces such as a microscope coverslip transmit cytoskeletally generated forces to their surroundings. Comparatively less is known about how cells adhere to and exert forces in soft, three-dimensional (3D), and structurally heterogeneous ECM environments such as occur in vivo. We used time-lapse 3D imaging and quantitative image analysis to determine how the actin cytoskeleton is mechanically coupled to the surrounding matrix for primary dermal fibroblasts embedded in a 3D fibrin matrix. Under these circumstances, the cytoskeletal architecture is dominated by contractile actin bundles attached at their ends to large, stable, integrin-based adhesions. Time-lapse imaging reveals that α-actinin-1 puncta within actomyosin bundles move more quickly than the paxillin-rich adhesion plaques, which in turn move more quickly than the local matrix, an observation reminiscent of the molecular clutch model. However, closer examination did not reveal a continuous rearward flow of the actin cytoskeleton over slower moving adhesions. Instead, we found that a subset of stress fibers continuously elongated at their attachment points to integrin adhesions, providing stable, yet structurally dynamic coupling to the ECM. Analytical modeling and numerical simulation provide a plausible physical explanation for this result and support a picture in which cells respond to the effective stiffness of local matrix attachment points. The resulting dynamic equilibrium can explain how cells maintain stable, contractile connections to discrete points within ECM during cell migration, and provides a plausible means by which fibroblasts contract provisional matrices during wound healing.


Sign in / Sign up

Export Citation Format

Share Document