scholarly journals Simulation of segmented influent AAO Process Wastewater based on ASM2d model

2021 ◽  
Vol 2030 (1) ◽  
pp. 012041
Author(s):  
Wenxue Jin ◽  
Qi Liu ◽  
Yangyang Wang ◽  
Kun You ◽  
Ning Kang ◽  
...  
Keyword(s):  
2020 ◽  
Vol 148 ◽  
pp. 01002
Author(s):  
Herto Dwi Ariesyady ◽  
Mentari Rizki Mayanda ◽  
Tsukasa Ito

Activated sludge process is one of the wastewater treatment method that is applied for many wastewater types including painting process wastewater of automotive industry. This wastewater is well-known to have high heavy metals concentration which could deteriorate water environment if appropriate performance of the wastewater treatment could not be achieved. In this study, we monitored microbial community diversity in a Painting Biological Treatment (PBT) system. We applied a combination of cultivation and genotypic biological methods based on 16S rRNA gene sequence analysis to identify the diversity of active microbial community. The results showed that active microbes that could grow in this activated sludge system were dominated by Gram-negative bacteria. Based on 16S rRNA gene sequencing analysis, it was revealed that their microbial diversity has close association with Bacterium strain E286, Isosphaera pallida, Lycinibacillus fusiformis, Microbacterium sp., Orchobactrum sp., Pseudomonas guariconensis, Pseudomonas sp. strain MR84, Pseudomonas sp. MC 54, Serpens sp., Stenotrophomonas acidaminiphila, and Xylella fastidiosa with similarity of 86 – 99%. This findings reflects that microbial community in a Painting Biological Treatment (PBT) system using activated sludge process could adapt with xenobiotics in the wastewater and has a wide range of diversity indicating a complex metabolism mechanism in the treatment process.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 677
Author(s):  
Muhammad Tahir Khan ◽  
Johannes Krümpel ◽  
Dominik Wüst ◽  
Andreas Lemmer

Production of bio-based materials in biorefineries is coupled with the generation of organic-rich process-wastewater that requires further management. Anaerobic technologies can be employed as a tool for the rectification of such hazardous by-products. Therefore, 5-hydroxymethylfurfural process-wastewater and its components were investigated for their biodegradability in a continuous anaerobic process. The test components included 5-hydroxymethylfurfural, furfural, levulinic acid, and the full process-wastewater. Each component was injected individually into a continuously operating anaerobic filter at a concentration of 0.5 gCOD. On the basis of large discrepancies within the replicates for each component, we classified their degradation into the categories of “delayed”, “retarded”, and “inhibitory”. Inhibitory represented the replicates for all the test components that hampered the process. For the retarded degradation, their mean methane yield per 0.5 gCOD was between 21.31 ± 13.04 mL and 28.98 ± 25.38 mL. Delayed digestion was considered adequate for further assessments in which the order of conversion to methane according to specific methane yield for each component from highest to lowest was as follows: levulinic acid > furfural > 5-hydroxymethylfurfural > process-wastewater. Disparities and inconsistencies in the degradation of process-wastewater and its components can compromise process stability as a whole. Hence, the provision of energy with such feedstock is questionable.


2002 ◽  
Vol 45 (12) ◽  
pp. 315-320 ◽  
Author(s):  
I. Sekoulov

The sustainable development of environmental protection is a newly created philosophy. It means continuous development of better protection of the air, soil, water and resources, used from the industry, to be saved also for future generations. The globalization of the economy is another process, which interferes with environmental ideas, and an equilibrium with the socio-eco-sustainable development is wanted. The industry is subjected to big changes depending on economic development. Thus the treatment plants at the end of the pipe must be constructed with maximum flexibility. A removal of constructed devices, if not necessary, must be considered from the beginning as a possibility. Priority is given to integrated production processes solving wastewater problems directly by production devices. The treatment of the process wastewater streams separately will become more important. The end of the pipe solutions will be less complicated and more reliable. The reuse of valuable waste substances and treated water will reduce the total cost of the treatment plants substantially.


Author(s):  
Erkata Yandri ◽  
Rinaldi Idroes ◽  
Roy Hendroko Setyobudi ◽  
Carolus Boromeus Rudationo ◽  
Satriyo Krido Wahono ◽  
...  

Dyeing Finishing (DF) textile industries which consume a lot of energy, chemicals, water, etc., then produce a lot of wastewater which creates significant environmental problems, can be anticipated by applying Cleaner Production. This paper is presented to discuss the technical modification process of dyeing production machines, which reuse process wastewater to save water and energy consumption in the production process. For that reason, there are three steps taken. First, understand the process flow of the textile dyeing industry. Second, understand in detail the dyeing process of the Jet Dyeing (JD) machine. Third, implement steps on the floor, focusing on the JD machine, starting from the initial conditions until the third step. As a result, savings in water consumption per day for 10 JD machines were achieved by almost 50 %, with details; at the initial status 700 000 L, 600 000 L in the first step, 430 000 L in the second step, and finally 400 000 L in the third step. A similar action can be carried out in other processes, such as washing, de-sizing, or in other industries which also consume a lot of water and energy.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3976
Author(s):  
Barbara Włodarczyk ◽  
Paweł P. Włodarczyk

Research related to measurements of electricity production was combined with parallel wastewater parameter reduction in a membrane-less microbial fuel cell (ML-MFC) fed with industry process wastewater (from a yeast factory). Electrodes with Ni–Co and Cu–B catalysts were used as cathodes. A carbon electrode (carbon cloth) was used as a reference due to its widespread use. It was demonstrated that all analyzed electrodes could be employed as cathodes in ML-MFC fed with process wastewater from yeast production. Electricity measurements during ML-MFC operations indicated that power (6.19 mW) and current density (0.38 mA·cm−2) were the highest for Ni–Co electrodes. In addition, during the exploitation of ML-MFC, it was recorded that the chemical oxygen demand (COD) removal per time for all types of electrodes was similar to the duration of COD decrease in the conditions for wastewater aeration. However, the COD reduction curve for aeration took the most favorable course. The concentration of NH4+ in ML-MFC remained virtually constant throughout the measurement period, whereas NO3− levels indicated almost complete removal (with a minimum increase in the last days of cell exploitation).


Sign in / Sign up

Export Citation Format

Share Document