scholarly journals Cost Analysis of Nuclear Hydrogen Production Using IAEA-HEEP 4 Software

2021 ◽  
Vol 2048 (1) ◽  
pp. 012005
Author(s):  
E Dewita ◽  
R Prassanti ◽  
K S Widana ◽  
Y S B Susilo

Abstract Hydrogen is a commercially important element. Basically, there are several methods of hydrogen production that have been commercially used, such as Steam Methane Reforming (SMR), High Temperature Steam Electrolysis (HTSE), and thermochemical cycles, like Sulphur-Iodine (SI). Among these methods, SMR is the most widely used for large-scale hydrogen production, with conversion efficiency between 74–85% and it has commercially used in some fertilizer industries in Indonesia. Steam reforming is a method to convert alkane (natural gas) compounds to hydrogen and carbon dioxide (synthetic gas) by adding moisture at high pressure and temperature (35-40 bar; 800-900°C). These hydrogen production technologies can be coupled with different nuclear reactors based on the heat required in the process. The High Temperature Gas-cooled Reactor (HTGR) using helium as a coolant, has a high outlet temperature (900°C), so it can potentially be used to supply for process heat for hydrogen production, coal liquefaction/gasification or for other industrial processes requiring high temperature heat. Hydrogen production cost from SMR method is influenced by a range of technical and economic factors. The fuel component of natural gas needed in the SMR method can be replaced by nuclear heat from a nuclear power plant (NPP) operating in cogeneration mode (i.e. simultaneous producing electric power and heat), hence contributing to the reduction of carbon dioxide in the process. In the SMR method, fuel costs are the largest cost component, accounting for between 45% and 75% of production costs. Therefore, there is opportune to assess the economics of hydrogen production by using nuclear heat. The economic evaluation is done by using IAEA HEEP-4 Software. The results comprise cost break up for 2 cases, coupling SMR process for hydrogen production with: (1) 2 HTGRs of 170 MWth/unit; and (2) 1 HTGR of 600 MWth/unit. The cost of hydrogen production is highly depend on the scale of the NPP as energy source and results indicated that hydrogen production cost of the 1 HTGR Unit600 MWth (Case 2) has a lower value (1.72 US$/kgH2), than the cost obtained when 2 HTGR units of 170 MWth each (case 1) are considered (2.72 US$/kgH2). For comparison, the hydrogen production cost by using SMR with carbon capture and storage (CCS) with natural gas as fuel is 2.27 US$/kgH2.

2021 ◽  
Vol 2021 (2) ◽  
pp. 4-11
Author(s):  
I.Ch. Leshchenko ◽  

The overview of decarbonization technologies of the gas industry, particularly Power-to-Gas technologies using renewable or excess electricity to produce hydrogen via water electrolysis is presented. Also, a comparative analysis of the main types of electrolyzers for hydrogen production – alkaline and with proton exchange membrane (PEM) is presented, and the conclusion that the PEM electrolyzers using renewable electricity is advisable for implementation in Ukraine. A comparative analysis of available most reasonable data sources regarding estimates of "green" hydrogen production cost is presented. The article also presents the mathematical formulations for levelised hydrogen production cost calculation and input data for calculation. The input data were obtained based on cited sources and own estimations taking into account Ukrainian specific conditions, i.e. PEM electrolyzer operating conditions. The results of the own calculation and ones performed by the cited authors are given. The results of the calculations showed that the key initial parameters that affect the cost of hydrogen production in Ukraine, as in other countries, are capital costs, the cost of electricity, and the electrolyzer load factor. The increase of load factor decreasing levelised cost of hydrogen production, which is important to account for the design of hydrogen production facility. In particular, the production cost of hydrogen using PEM electrolyzer could be reduced from 15.73 $ US/kg H2 to 7.34 $ USA/kg H2 if electricity supplied by NPP at night at "night tariff" will be used instead of electricity from the photovoltaic plant. The results of calculations showed that the obtained hydrogen production costs in Ukraine for both cases - the use of electricity from renewables and from the grid are comparable to European estimates of the hydrogen production costs. Keywords: decarbonization, gas industry, electrolyzer, hydrogen production, weighted-average levelised cost


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
William L. Becker ◽  
Michael Penev ◽  
Robert J. Braun

Power-to-gas to energy systems are of increasing interest for low carbon fuels production and as a low-cost grid-balancing solution for renewables penetration. However, such gas generation systems are typically focused on hydrogen production, which has compatibility issues with the existing natural gas pipeline infrastructures. This study presents a power-to-synthetic natural gas (SNG) plant design and a techno-economic analysis of its performance for producing SNG by reacting renewably generated hydrogen from low-temperature electrolysis with captured carbon dioxide. The study presents a “bulk” methanation process that is unique due to the high concentration of carbon oxides and hydrogen. Carbon dioxide, as the only carbon feedstock, has much different reaction characteristics than carbon monoxide. Thermodynamic and kinetic considerations of the methanation reaction are explored to design a system of multistaged reactors for the conversion of hydrogen and carbon dioxide to SNG. Heat recuperation from the methanation reaction is accomplished using organic Rankine cycle (ORC) units to generate electricity. The product SNG has a Wobbe index of 47.5 MJ/m3 and the overall plant efficiency (H2/CO2 to SNG) is shown to be 78.1% LHV (83.2% HHV). The nominal production cost for SNG is estimated at 132 $/MWh (38.8 $/MMBTU) with 3 $/kg hydrogen and a 65% capacity factor. At U.S. DOE target hydrogen production costs (2.2 $/kg), SNG cost is estimated to be as low as 97.6 $/MWh (28.6 $/MMBtu or 1.46 $/kgSNG).


Author(s):  
K. J. Yang ◽  
K. Y. Lee ◽  
T. H. Lee

As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GT-MHR and PBMR are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of SI process with VHTR as a thermal energy source rather than the LUEC. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if CO2 capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of CO2. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.


2006 ◽  
Vol 2006 ◽  
pp. 1-12
Author(s):  
A. Korobeinikov ◽  
P. Read ◽  
A. Parshotam ◽  
J. Lermit

It has been suggested that the large scale use of biofuel, that is, fuel derived from biological materials, especially in combination with reforestation of large areas, can lead to a low-cost reduction of atmospheric carbon dioxide levels. In this paper, a model of three markets: fuel, wood products, and land are considered with the aim of evaluating the impact of large scale biofuel production and forestry on these markets, and to estimate the cost of a policy aimed at the reduction of carbon dioxide in the atmosphere. It is shown that the costs are lower than had been previously expected.


2020 ◽  
Vol 17 (2) ◽  
pp. 129-140
Author(s):  
D Damayanti ◽  
A I Jaya ◽  
Resnawati

ABSTRACT The purpose of this research is to obtain an the optimal production costs of Klappertart based on the basic ingredients comparing the production cost of Klappertart in Najmah Klappertart with production costs using the simplex method. The result showed that the optimal costs is ,-. This result is equal to the total cost of klappertart by SMEs Najmah Klappertart, so it can be concluded that the cost of production klappertart based on the basic ingredients on SMEs Najmah Klappertart were optimal. Keywords      : Optimal Cost, Basic Ingredients, Production Costs. (A-Z), Simplex Method  


2019 ◽  
Vol 4 (1) ◽  
pp. 28-42
Author(s):  
Suprianto Suprianto ◽  
Bina Andari ◽  
Yely Sulistyawati

This study aims to evaluate the calculation of cost of production. The accuracy of the calculation of cost of production is influenced by the suitability in the accumulation and calculation of production costs which includes the cost of raw materials, direct labor costs and other costs (factory overhead costs). This research was conducted at UKM UD. Usaha Baru which aims to determine the calculation of cost of production at UD. Usaha Baru and to find out whether the calculation of cost of production is in accordance with the full costing method. The technique (method) of data analysis used in this study is quantitative analysis. Data collection techniques use interview techniques directly to obtain information from the number of units of monthly production, raw material costs, direct labor costs, and factory overhead costs, as well as other information relating to the calculation of cost of production. Based on the evaluation results for the calculation of raw material costs and labor costs are in accordance with the full costing method. However, the calculation of factory overhead costs is not in accordance with the full costing method because there are costs that have not been included in the calculation of production costs.


scholarly journals The effect of changes in opportunity costs and prices of some agricultural products such as sugar beet, corn,wheat etc. used for bioethanol production on the cost of bioethanol production is not adequately known in Turkey.. Therefore, it was aimed to determine the bioethanol production cost items and unit production costs and also to put forth the effects of variations in raw material prices on cost of bioethanol.. The research data were collected via personal interviews from active bioethanol plants in Turkey. The results of previous studies and documents of related institutions and organizations were also used. The study followed classical cost analysis approach to calculate production cost. Scenario analysis was performed when exploring the effect of raw material prices on bioethanol production cost. Research findings showed that production cost per litre bioethanol produced from sugar beet molasses, corn, wheat and corn-wheat mixture were 2.50 TL, 2.84 TL, 2.95 and 2.84 TL, respectively. The share of raw material expenses in bioethanol cost per liter varied associated with the crops used in the process, it was 28.55% for bioethanol produced from sugar beet molasses, 44.81% for bioethanol produced from corn-wheat mixture and 44.87% bioethanol produced from corn. The research results also showed that the changes that occur in raw material prices significantly affected the bioethanol production cost and opportunity cost of crops created difficulties in biomass supply. Implementing the suitable policies and strategies and making the necessary arrangements in legislation would enhance the economic sustainability of bioethanol production in Turkey.

2017 ◽  
Vol 32 (1) ◽  
pp. 16-16
Author(s):  
Selime Canan ◽  
Vedat Ceyhan

2007 ◽  
Vol 47 (1) ◽  
pp. 239
Author(s):  
J.Q. Xu ◽  
G. Weir ◽  
L. Paterson ◽  
I. Black ◽  
S. Sharma

This paper reports on the planning, procedure, results and analysis of a carbon dioxide (CO2) well test performed on Buttress–1, a well located in the Otway Basin, Victoria, Australia. A large-scale pilot study of CO2 sequestration is planned by the Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) in this area, which will involve, inter alia, taking CO2 from the Buttress reservoir and injecting it into a nearby depleted gas field. Understanding the production characteristics of this well is important to the success of this pilot, which forms part of a more extensive study to establish viable means to mitigate CO2 emissions to the atmosphere. This general backdrop forms the motivation for this study.Testing comprised of a standard suite of draw-downs and build-ups to determine reservoir/well characteristics, such as the well deliverability, the non-Darcy skin coefficient and the average reservoir permeability and volume.Compared to the wealth of experience developed over many years in testing oil and gas wells, the collective experience in CO2 well testing is extremely limited. The distinguishing features between this test and those of a typical natural gas well test need to be emphasised. Although, in general, flow testing a CO2 well should be similar to testing a natural gas well, differences in the thermodynamic properties of CO2 affect the analysis of the well test considerably. In particular, the non-Darcy skin effect is more pronounced and the wellbore and surface flow can involve dramatic phase changes, such as the formation of ice. Also, since CO2 is more compressible than a typical natural gas, the accurate measurement of the flow rate becomes more challenging. It is also apparent that the use of pseudo pressure, as opposed to simpler methods of dealing with the pressure dependency of key properties, is essential to the successful analysis of the pressure response to the CO2 production.


Sign in / Sign up

Export Citation Format

Share Document