scholarly journals Vortex heat transfer enhancement in the separated flow near structured dimpled surfaces

2021 ◽  
Vol 2057 (1) ◽  
pp. 012002
Author(s):  
S A Isaev ◽  
I A Popov ◽  
N I Mikheev ◽  
S V Guvernyuk ◽  
M A Zubin ◽  
...  

Abstract The numerically discovered phenomena of abnormal enhancement of the separated flow in the inclined oval-trench dimple (OTD) and the flow acceleration in the dimpled narrow channel are substantiated experimentally. The analysis of turbulent flow around a deep OTD on the plate and on the channel wall show that within the inclination angle range from 25° to 85°, the pressure drop is seen between the zones of stagnation on the windward slope and of rarefaction in the place where a tornado-like vortex is generated. The velocity field measurements in the narrow channel with two rows of inclined OTDs at the inclination angles of ±45° and ±135° reveal that the shear flow with a maximum velocity in front of the dimple entrance is formed in the flow core. This maximum shear flow velocity exceeds the maximum velocity in the plane-parallel channel.

2021 ◽  
Vol 2119 (1) ◽  
pp. 012016
Author(s):  
S A Isaev ◽  
N I Mikheev ◽  
N S Dushin ◽  
A E Goltsman ◽  
D V Nikushchenko ◽  
...  

Abstract Experimental measurements and numerical predictions of the longitudinal component of the air velocity in a narrow channel with two rows of 26 densely packed oval trenches at angles of ±45° and ±135° in laminar (Re=103) and turbulent (Re=4×103) regimes have been compared. The acceptability of the RANS approach using the modified SST turbulence model within the Rodi–Leschziner–Isaev approach has been substantiated. The flow acceleration in the dimpled channel up to the longitudinal velocity maxima of 1.85 and 1.55 of the average bulk velocity for laminar and turbulent air flows has been experimentally confirmed.


Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


2011 ◽  
Vol 677 ◽  
pp. 342-382 ◽  
Author(s):  
REMI BOURGUET ◽  
GEORGE E. KARNIADAKIS ◽  
MICHAEL S. TRIANTAFYLLOU

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D = 200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake. The selected tension and bending stiffness lead to high-wavenumber vibrations, similar to those encountered in long ocean structures. The resulting vortex-induced vibrations consist of a mixture of standing and travelling wave patterns in both the in-line and cross-flow directions; the travelling wave component is preferentially oriented from high to low velocity regions. The in-line and cross-flow vibrations have a frequency ratio approximately equal to 2. Lock-in, the phenomenon of self-excited vibrations accompanied by synchronization between the vortex shedding and cross-flow vibration frequencies, occurs in the high-velocity region, extending across 30% or more of the beam length. The occurrence of lock-in disrupts the spanwise regularity of the cellular patterns observed in the wake of stationary cylinders in shear flow. The wake exhibits an oblique vortex shedding pattern, inclined in the direction of the travelling wave component of the cylinder vibrations. Vortex splittings occur between spanwise cells of constant vortex shedding frequency. The flow excites the cylinder under the lock-in condition with a preferential in-line versus cross-flow motion phase difference corresponding to counter-clockwise, figure-eight orbits; but it damps cylinder vibrations in the non-lock-in region. Both mono-frequency and multi-frequency responses may be excited. In the case of multi-frequency response and within the lock-in region, the wake can lock in to different frequencies at various spanwise locations; however, lock-in is a locally mono-frequency event, and hence the flow supplies energy to the structure mainly at the local lock-in frequency.


1963 ◽  
Vol 85 (3) ◽  
pp. 377-390 ◽  
Author(s):  
O. G. Brown ◽  
A. W. Marris

An experimental study of turbulent flow in a plane curved channel of depth-to-width ratio 8:1 and mean radius-to-width ratio 1.83:1 by means of measured distributions of mean peripheral velocity and pressure and flow visualization methods using dye. It appears that due to the large depth-to-width ratio, the secondary flow, though appreciable, is apparent mainly in the end plate regions. Even so it has a pronounced effect on the flow near the inner (convex) wall. It appears that the sharp curvature is effective in quenching the turbulence of the entering rectilinear shear flow at the inner wall of the curved channel by causing a mean flow acceleration in this region. The study indicates that localized backflows can occur at the inner wall at the meeting of secondary and main flows under near-laminar conditions.


1973 ◽  
Vol 61 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Masaru Kiya ◽  
Mikio Arie

An aspect of the laminar far wake behind a symmetrical two-dimensional body placed in a uniform shear flow is described theoretically by means of the Oseen type of successive approximation, in which the shear is regarded as a small perturbation on a uniform stream. The expression for the stream function is determined up to the third approximation both in and outside the wake region, and the region in which the results of the perturbation analysis are valid is also determined. The stream function is found to contain four constants which cannot be determined from the boundary conditions for the far wake. The analysis also shows that the spreading of the wake is greater towards the side of smaller velocity than the side of larger velocity, the asymmetrical feature of the velocity defect becoming more evident as the distance from the obstacle is increased: the point which shows the maximum velocity defect shifts to the low-velocity side.


Author(s):  
Chengzhi Hu ◽  
Minli Bai ◽  
Jizu Lv ◽  
Yuyan Wang

The flow and heat transfer characteristics of nanofluids in the near-wall region were studied by non-equilibrium molecular dynamics simulation. The nanofluid model consisted of one spherical copper nanoparticle and argon atoms as base liquid. The effective thermal conductivity (ETC) of nanofluids and base fluid in shear flow fields were obtained. The ETC was increased with the increasing of shear velocity for both base fluid and nanofluids. The heat transfer enhancement of nanofluids in the shear flow field (v≠0) is better than that in the zero-shear flow field (v=0). By analyzing the flow characteristics we proved that the micro-motions of nanoparticles were another mechanism responsible for the heat transfer enhancement of nanofluids in the flow field. Based on the model built in the paper, we found that the thermal properties accounted for 52%–65% heat transfer enhancement and the contribution of micro-motions is 35%–48%.


Sign in / Sign up

Export Citation Format

Share Document