scholarly journals Analysis on Flow Field Characteristics of Airfoil in Pitching Motion

2021 ◽  
Vol 2076 (1) ◽  
pp. 012069
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract Based on CFD, the flow field characteristics of NACA4412 airfoil are analyzed under pitching motion, and its aerodynamic characteristics are interpreted. The results show that streamline changes on the upper surface of the airfoil play a decisive role in the aerodynamic characteristics. The interaction between the vortex leads to fluctuations in the lift and drag coefficients. Under a big angle of attack, the secondary trailing vortex on the upper surface of the airfoil adheres to the trailing edge of the airfoil, resulting in an increased drag coefficient. Under a small angle of attack, the secondary trailing vortex can break away from the airfoil. The lift coefficient reaches the maximum value of 2.961 before the airfoil is turned upside down, and the drag coefficient reaches the maximum value of 1.515 after the airfoil is turned upside down, but the corresponding angles of attack of the two are equal.

2021 ◽  
Vol 2076 (1) ◽  
pp. 012078
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The aerodynamic characteristics of NACA4412 airfoil with different pitching motion elements were compared and analyzed based on CFD in this research. The results are acquired as follows: the difference between the lift and drag coefficients of the airfoil during pitch up and pitch down motions becomes larger with the increase of the pitching amplitude or initial angle of attack; as the pitching amplitude increases, the lift coefficient grows slightly greater and the drag coefficient grows much greater; as the initial angle of attack increases, the lift coefficient grows much greater and the drag coefficient grows slightly; the smaller the attenuation frequency is, the larger the lift-to-drag ratio of the airfoil will be.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012066
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The NACA4415 airfoil was numerically simulated with the help of the Fluent software to analyze its aerodynamic characteristics. Results are acquired as follows: The calculation accuracy of Fluent software is much higher than that of XFOIL software; the calculation result of SST k-ω(sstkw) turbulence model is closest to the experimental value; within a certain range, the larger the Reynolds number is, the larger the lift coefficient and lift-to-drag ratio of the airfoil will be, and the smaller the drag coefficient will be; when the angle of attack is less than the optimal angle of attack, the Reynolds number has less influence on the lift-to-drag coefficient and the lift-to-drag ratio; as the Reynolds number increases, the optimal angle of attack increases slightly, and the applicable angle of attack range for high lift-to-drag ratios becomes smaller.


2017 ◽  
Vol 121 (1245) ◽  
pp. 1711-1732 ◽  
Author(s):  
R. Kalimuthu ◽  
R. C. Mehta ◽  
E. Rathakrishnan

ABSTRACTA forward spike attached to a blunt body significantly alters its flow field characteristics and influences aerodynamic characteristics at hypersonic flow due to formation of separated flow and re-circulation region around the spiked body. An experimental investigation was performed to measure aerodynamic forces for spikes blunt bodies with a conical, hemispherical and flat-face spike at Mach 6 and at an angle-of-attack range from 0° to 8° and length-to-diameterL/Dratio of spike varies from 0.5 to 2.0, whereLis the length of the spike andDis diameter of blunt body. The shape of the leading edge of the spiked blunt body reveals different types of flow field features in the formation of a shock wave, shear layer, flow separation, re-circulation region and re-attachment shock. They are analysed with the help of schlieren pictures. The shock distance ahead of the hemisphere and the flat-face spike is compared with the analytical solution and is showing satisfactory agreement with the schlieren pictures. The influence of geometrical parameters of the spike, the shape of the spike tip and angle-of-attack on the aerodynamic coefficients are investigated by measuring aerodynamic forces in a hypersonic wind tunnel. It is found that a maximum reduction of drag of about 77% was found for hemisphere spike ofL/D= 2.0 at zero angle-of-attack. Consideration for compensation of increased pitching moment is required to stabilise the aerodynamic forces.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Saeed Jamei ◽  
Adi Maimun Abdul Malek ◽  
Shuhaimi Mansor ◽  
Nor Azwadi Che Sidik ◽  
Agoes Priyanto

Wing configuration is a parameter that affects the performance of wing-in-ground effect (WIG) craft. In this study, the aerodynamic characteristics of a new compound wing were investigated during ground effect. The compound wing was divided into three parts with a rectangular wing in the middle and two reverse taper wings with anhedral angle at the sides. The sectional profile of the wing model is NACA6409. The experiments on the compound wing and the rectangular wing were carried to examine different ground clearances, angles of attack, and Reynolds numbers. The aerodynamic coefficients of the compound wing were compared with those of the rectangular wing, which had an acceptable increase in its lift coefficient at small ground clearances, and its drag coefficient decreased compared to rectangular wing at a wide range of ground clearances, angles of attack, and Reynolds numbers. Furthermore, the lift to drag ratio of the compound wing improved considerably at small ground clearances. However, this improvement decreased at higher ground clearance. The drag polar of the compound wing showed the increment of lift coefficient versus drag coefficient was higher especially at small ground clearances. The Reynolds number had a gradual effect on lift and drag coefficients and also lift to drag of both wings. Generally, the nose down pitching moment of the compound wing was found smaller, but it was greater at high angle of attack and Reynolds number for all ground clearance. The center of pressure was closer to the leading edge of the wing in contrast to the rectangular wing. However, the center of pressure of the compound wing was later to the leading edge at high ground clearance, angle of attack, and Reynolds number.


2021 ◽  
Vol 49 (2) ◽  
pp. 395-400
Author(s):  
Manthan Patil ◽  
Rajesh Gawade ◽  
Shubham Potdar ◽  
Khushabu Nadaf ◽  
Sanoj Suresh ◽  
...  

Flow over a conventional delta wing has been studied experimentally at a subsonic flow of 20 m/sec and the flow field developed at higher angle of attack varying from 10° to 20° has been captured. A vortex generator is mounted on the leeward surface of the delta wing and its effect on the flow field is studied. The set of wing tip vortices generated over the delta wing is captured by the oil flow visualization and the streamline over the delta wing surface captured with and without a vortex generator are compared. Based on the qualitative results, the effect of the vortex generator on the lift coefficient is anticipated. Further, force measurement is carried out to quantitatively analyze the effect of vortex generator on the lift and drag coefficient experienced by the delta wing and justify the anticipation made out of the qualitative oil flow visualization tests. In the present study, the effect of mounting of a vortex generator is found to be minimal on the lift coefficient experienced by the delta wing. However, a significant reduction in the drag coefficient with increase in angle of attack was observed by mounting a typical vortex generator.


2020 ◽  
Vol 01 (02) ◽  
pp. 29-36
Author(s):  
Md Rhyhanul Islam Pranto ◽  
Mohammad Ilias Inam

The aim of the work is to investigate the aerodynamic characteristics such as lift coefficient, drag coefficient, pressure distribution over a surface of an airfoil of NACA-4312. A commercial software ANSYS Fluent was used for these numerical simulations to calculate the aerodynamic characteristics of 2-D NACA-4312 airfoil at different angles of attack (α) at fixed Reynolds number (Re), equal to 5×10^5 . These simulations were solved using two different turbulence models, one was the Standard k-ε model with enhanced wall treatment and other was the SST k-ω model. Numerical results demonstrate that both models can produce similar results with little deviations. It was observed that both lift and drag coefficient increase at higher angles of attack, however lift coefficient starts to reduce at α =13° which is known as stalling condition. Numerical results also show that flow separations start at rare edge when the angle of attack is higher than 13° due to the reduction of lift coefficient.


2017 ◽  
Vol 15 (1) ◽  
pp. 45
Author(s):  
Awalu Romadhon ◽  
Dana Herdiana

LSU-05 aircraft is one of the unmanned aerial vehicles (UAV), which is being developed by the Aeronautics Technology Center of LAPAN, whose mission is for research, observation, patrol, border surveillance, and investigation of natural disasters. This study aims to determine the effect of vortex generators on the aerodynamic characteristics of the LSU-05 Unmanned Aircraft wing. The method used is a numerical analysis with CFD simulation for predicting aerodynamic characteristics and flow phenomena that occur. The models used are the aircraft wing of the LSU-05 without vortex generator and with vortex generator designed with CATIA software. The simulation is using ANSYS Fluent software to determine changes in the aerodynamic characteristics of the wing after the addition of vortex generators such as the lift coefficient and drag coefficient. The results of the addition of vortex generator on LSU-05 wings are the increasing value of the maximum lift coefficient of the wing which becomes 1,34840 from 1,26450, it increases 0,0839 (6.63%) point, the increasing value of the drag coefficient on the angle of attack from -9⁰ to 11⁰, the decreasing value of the drag coefficient on the angle of attack 12⁰ up to 15⁰ and the increasing stall angle of wing from 11⁰ to 14⁰ or increased by 3⁰ (27,7%). AbstrakPesawat LSU-05 adalah salah satu pesawat tanpa awak (UAV) yang sedang dikembangkan oleh Pusat Teknologi Penerbangan LAPAN, yang mempunyai misi untuk kegiatan penelitian, observasi, patroli, pengawasan perbatasan wilayah, dan investigasi bencana alam. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan vortex generator terhadap karakteristik aerodinamika dari sayap Pesawat Tanpa Awak LSU-05. Metode yang digunakan adalah analisis numerik dengan simulasi CFD untuk memprediksi karakteristik aerodinamika dan fenomena aliran yang terjadi. Model yang digunakan adalah sayap pesawat LSU-05 tanpa vortex generator dan dengan vortex generator yang didesain dengan software CATIA. Simulasi menggunakan software ANSYS Fluent untuk mengetahui perubahan karakteristik aerodinamika sayap setelah penambahan vortex generator seperti koefisien lift dan koefisien drag. Hasil yang diperoleh dari penelitian penambahan vortex generator pada sayap Pesawat LSU-05 adalah peningkatan nilai koefisien lift maksimum sayap dari 1,26450 menjadi 1,34840 atau naik sebesar 0,0839 (6,63%), peningkatan nilai koefisien drag pada sudut serang -9⁰ s/d 11⁰, penurunan nilai koefisien drag pada sudut serang 12⁰ s.d 15⁰ dan peningkatan sudut stall sayap dari 11⁰ menjadi 14⁰ atau naik sebesar 3⁰ (27,7 %).


Author(s):  
Boris A. Mandadzhiev ◽  
Michael K. Lynch ◽  
Leonardo P. Chamorro ◽  
Aimy A. Wissa

Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. In order for a fixed wing aircraft to maintain the lift necessary for sustained flight at very low speeds and large angles of attack (AoA), the wing shape has to change. This is often achieved by using deployable aerodynamic surfaces, such as flaps or slats, from the wing leading or trailing edges. In nature, one such device is a feathered structure on birds’ wings called the alula. The span of the alula is 5% to 20% of the wing and is attached to the first digit of the wing. The goal of the current study is to understand the aerodynamic effects of the alula on wing performance. A series of wind tunnel experiments are performed to quantify the effect of various alula deployment parameters on the aerodynamic performance of a cambered airfoil (S1223). A full wind tunnel span wing, with a single alula located at the wing mid-span is tested under uniform low-turbulence flow at three Reynolds numbers, Re = 85,000, 106,00 and 146,000. An experimental matrix is developed to find the range of effectiveness of an alula-type device. The alula relative angle of attack measured measured from the mean chord of the airfoil is varied to modulate tip-vortex strength, while the alula deflection is varied to modulate the distance of the tip vortex to the wing surface. Lift and drag forces were measured using a six axis force transducer. The lift and drag coefficients showed the greatest sensitivity to the the alula relative angle of attack, increasing the normalized lift coefficient by as much as 80%. Improvements in lift are strongly correlated to higher alula angle, with β = 0° – 5°, while reduction in the drag coefficient is observed with higher alula tip deflection ratios and lower β angles. Results show that, as the wing angle of attack and Reynolds number are increased, the overall lift co-efficient improvement is diminished while the reduction in drag coefficient is higher.


Author(s):  
Shahrooz Eftekhari ◽  
Abdulkareem Shafiq Mahdi Al-Obaidi

The aerodynamic characteristics of a NACA0012 wing geometry at low Reynold’s numbers and angle of attack ranging from 0º to 90º are investigated using numerical simulations and the results are validated by wind tunnel experiments. Further experiments are conducted at low Reynold’s numbers of 1 × 105, 2 × 105 and 3 × 105. Findings of the study show a similar trend for the lift and drag coefficients at all the investigated Reynold’s numbers. The lift coefficient is linearly increased with angle of attack until it reaches its maximum value at 32º which is the stall angle. It is observed that further increment in angle of attack results in decrement of lift coefficient until it reaches its minimum value at 90º angle of attack. The drag force acting on the airfoil increases as the angle of attack is increased and increment in the drag force results in change of laminar flow to turbulent flow. As the turbulence gets higher the flow starts to separate from the airfoil surface due to eddies generated by turbulence. Hence, the lift force generated by the wing is reduced and drag force is increased simultaneously, which results in poor performance of the wing.


2013 ◽  
Vol 302 ◽  
pp. 640-645
Author(s):  
Su Jeong Lee ◽  
Eui Chul Jeong ◽  
Hee Chang Lim

In this study, a numerical simulation is made to understand the effect of the angle of attack on a NACA airfoil, which will be used for a basic shape to apply for making the vertical axis Darius wind turbine. The near-wall y+ value which is less than 1 is known to be most desirable for a near-wall modeling. Therefore, this study is aiming to observe the variation and find the optimized value of y+. The Reynolds number used in this study was 360,000, where the chord length and the velocity were 0.12m and 43.8m/s, respectively. Generally, the lift coefficient of the airfoil tends to increase as the angle of attack increases and it decreases substantially at the stall angle and then it decreases. As expected, the lift coefficient increases rapidly from 0 to 10° and then after the sudden drop of the lift (i.e., the stall) at around 10 to 16° depending on the y+ value. In this paper, it seems to be reliable and appropriate to use y+ value close to 1. From the surface pressure distribution, from the result obtained the ratio of pressure distribution of maximum value to the minimum value was 1.89and these peaks move forward to backward as the angle of attack increases.


Sign in / Sign up

Export Citation Format

Share Document