scholarly journals A new device for autonomous space devices based on a three-component quantum variometer

2021 ◽  
Vol 2086 (1) ◽  
pp. 012089
Author(s):  
S E Logunov ◽  
V V Davydov ◽  
V Yu Rud

Abstract The necessity of additional study of magnetic field variations in the magnetic transition layer, in the magnetopause, as well as in the plasma layer and in the tail of the magnetosphere in a wide range of distances from the Earth is substantiated. To obtain additional information in comparison with the studies that are being carried out in outer space at the present time, it is necessary to simultaneously monitor the magnetic field at various points in outer space. It is also necessary to register the dynamics of changes in the magnetic field in time in space by three components. To accomplish this task, a small-sized three-component quantum variometer with autonomous power supply has been developed for space devices, which can be lost in the course of short-term research. The results of the operation of a quantum variometer are presented.

2018 ◽  
Vol 1 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Alexey Chernogor ◽  
Igor Blinkov ◽  
Alexey Volkhonskiy

The flow, energy distribution and concentrations profiles of Ti ions in cathodic arc are studied by test particle Monte Carlo simulations with considering the mass transfer through the macro-particles filters with inhomogeneous magnetic field. The loss of ions due to their deposition on filter walls was calculated as a function of electric current and number of turns in the coil. The magnetic field concentrator that arises in the bending region of the filters leads to increase the loss of the ions component of cathodic arc. The ions loss up to 80 % of their energy resulted by the paired elastic collisions which correspond to the experimental results. The ion fluxes arriving at the surface of the substrates during planetary rotating of them opposite the evaporators mounted to each other at an angle of 120° characterized by the wide range of mutual overlapping.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2021 ◽  
Author(s):  
Aditya Varma ◽  
Binod Sreenivasan

<p>It is known that the columnar structures in rapidly rotating convection are affected by the magnetic field in ways that enhance their helicity. This may explain the dominance of the axial dipole in rotating dynamos. Dynamo simulations starting from a small seed magnetic field have shown that the growth of the field is accompanied by the excitation of convection in the energy-containing length scales. Here, this process is studied by examining axial wave motions in the growth phase of the dynamo for a wide range of thermal forcing. In the early stages of evolution where the field is weak, fast inertial waves weakly modified by the magnetic field are abundantly present. As the field strength(measured by the ratio of the Alfven wave to the inertial wave frequency) exceeds a threshold value, slow magnetostrophic waves are spontaneously generated. The excitation of the slow waves coincides with the generation of helicity through columnar motion, and is followed by the formation of the axial dipole from a chaotic, multipolar state. In strongly driven convection, the slow wave frequency is attenuated, causing weakening of the axial dipole intensity. Kinematic dynamo simulations at the same parameters, where only fast inertial waves are present, fail to produce the axial dipole field. The dipole field in planetary dynamos may thus be supported by the helicity from slow magnetostrophic waves.</p>


2007 ◽  
Vol 73 (1) ◽  
pp. 89-115 ◽  
Author(s):  
LARS G. WESTERBERG ◽  
HANS O. ÅKERSTEDT

Abstract.A compressible model of the magnetosheath plasma flow is considered. Magnetic reconnection is assumed to occur in a region stretching from the sub-Solar point to the north. Two locations of the reconnection site are treated: two and four Earth radii from the sub-Solar point, respectively. By treating the transition layer as very thin, we solve the governing equations approximately using the method of matched asymptotic expansions. The behavior of the magnetic field and the plasma velocity close to a reconnection site during the transition from the magnetosheath to the magnetosphere is investigated. We also obtain the development of the transition layer thickness north and south of the reconnection point. The magnetopause transition layer is represented by a large-amplitude Alfvén wave implying that the density is approximately the same across the magnetopause boundary. In order to match the solutions we consider a compressible ideal magnetohydrodynamic model describing density, velocity and magnetic field variations along the outer magnetopause boundary. We also compare the analytical results with solutions from a numerical simulation. The compressible effects on the structure of the magnetic field and the total velocity evolution are visible but not dramatic. It is shown that the transition layer north of the reconnection point is thinner than to the south. The effect is stronger for reconnection at higher latitudes.


1999 ◽  
Vol 13 (29n31) ◽  
pp. 3715-3717 ◽  
Author(s):  
D. G. NAUGLE ◽  
K. D. D. RATHNAYAKA ◽  
K. CLARK ◽  
P. C. CANFIELD

In-plane resistance as a function of magnitude and direction of the magnetic field and the temperature has been measured for TmNi2B2C from above the superconducting transition temperature at 10.7 K to below the magnetic transition TN=1.5 K. The superconducting upper critical field HC2(T) exhibits a large anisotropy and structure in the vicinity of TN. The magnetoresistance above TC is large and changes sign as the direction of the magnetic field is rotated from in-plane to parallel with the c-axis.


2019 ◽  
Vol 19 (2) ◽  
pp. 195-201
Author(s):  
Chris M. Hall ◽  
Magnar G. Johnsen

AbstractA hypothesis is proposed wherein changes in the Earth's magnetic field affect the migratory paths of snow buntings (Plectrophenax nivalis), and in particular from wintering grounds in the Russian/Ukrainian steppes to breeding grounds on Svalbard and with a typical stopover in Finnmark in northern Norway. If one were to assume ignorance of the secular movement of the magnetic north pole approximately 1500 km northwards between 1908 and 2020, the magnetoreceptor contribution to snow buntings' navigation would result in winter-to-summer migratory paths progressively further to the East. In turn, this could be a contributing factor to declining populations in Finnmark and favouring a more frequent flightpath over the Kola Peninsula. On the other hand, short-term perturbations in the magnetic field (i.e. induced by solar activity) and therefore existing for a relatively small proportion of the flight time (if at all) for the individual migrations legs seem unlikely to influence the stopover locations significantly. Even so, these space-weather induced variations cannot be disregarded, particularly for success in reaching Svalbard.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6664
Author(s):  
Letícia Fernandes ◽  
Sara Santos ◽  
Marília Barandas ◽  
Duarte Folgado ◽  
Ricardo Leonardo ◽  
...  

Infrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or the proliferation of 5G technology. This raises the need for new infrastructure-free IPS independent of Wi-Fi networks. In this paper, we propose the use of magnetic field data for IPS, through Deep Neural Networks (DNN). Firstly, a dataset of human indoor trajectories was collected with different smartphones. Afterwards, a magnetic fingerprint was constructed and relevant features were extracted to train a DNN that returns a probability map of a user’s location. Finally, two postprocessing methods were applied to obtain the most probable location regions. We asserted the performance of our solution against a test dataset, which produced a Success Rate of around 80%. We believe that these results are competitive for an IPS based on a single sensing source. Moreover, the magnetic field can be used as an additional information layer to increase the robustness and redundancy of current multi-source IPS.


2019 ◽  
Vol 488 (3) ◽  
pp. 3439-3445 ◽  
Author(s):  
Sharanya Sur

Abstract We explore the decay of turbulence and magnetic fields generated by fluctuation dynamo action in the context of galaxy clusters where such a decaying phase can occur in the aftermath of a major merger event. Using idealized numerical simulations that start from a kinetically dominated regime we focus on the decay of the steady state rms velocity and the magnetic field for a wide range of conditions that include varying the compressibility of the flow, the forcing wavenumber, and the magnetic Prandtl number. Irrespective of the compressibility of the flow, both the rms velocity and the rms magnetic field decay as a power law in time. In the subsonic case we find that the exponent of the power law is consistent with the −3/5 scaling reported in previous studies. However, in the transonic regime both the rms velocity and the magnetic field initially undergo rapid decay with an ≈t−1.1 scaling with time. This is followed by a phase of slow decay where the decay of the rms velocity exhibits an ≈−3/5 scaling in time, while the rms magnetic field scales as ≈−5/7. Furthermore, analysis of the Faraday rotation measure (RM) reveals that the Faraday RM also decays as a power law in time ≈t−5/7; steeper than the ∼t−2/5 scaling obtained in previous simulations of magnetic field decay in subsonic turbulence. Apart from galaxy clusters, our work can have potential implications in the study of magnetic fields in elliptical galaxies.


2020 ◽  
Vol 634 ◽  
pp. A96
Author(s):  
E. Vickers ◽  
I. Ballai ◽  
R. Erdélyi

Aims. We investigate the nature of the magnetic Rayleigh–Taylor instability at a density interface that is permeated by an oblique homogeneous magnetic field in an incompressible limit. Methods. Using the system of linearised ideal incompressible magnetohydrodynamics equations, we derive the dispersion relation for perturbations of the contact discontinuity by imposing the necessary continuity conditions at the interface. The imaginary part of the frequency describes the growth rate of waves due to instability. The growth rate of waves is studied by numerically solving the dispersion relation. Results. The critical wavenumber at which waves become unstable, which is present for a parallel magnetic field, disappears because the magnetic field is inclined. Instead, waves are shown to be unstable for all wavenumbers. Theoretical results are applied to diagnose the structure of the magnetic field in prominence threads. When we apply our theoretical results to observed waves in prominence plumes, we obtain a wide range of field inclination angles, from 0.5° up to 30°. These results highlight the diagnostic possibilities that our study offers.


Sign in / Sign up

Export Citation Format

Share Document