scholarly journals The gaseous hydrocarbon fuel combustion process diagnostics using laser-spark emission spectrometry

2021 ◽  
Vol 2094 (2) ◽  
pp. 022055
Author(s):  
M A Vaganov ◽  
V I Kazakov

Abstract To solve the gaseous hydrocarbon fuel combustion process control and diagnostics problem, it is proposed to apply the laser-spark emission spectrometry methods. In propane-air mixture combustion, three modes are investigated: stoichiometric combustion, an enriched mixture, and a lean mixture. A laboratory stand has been developed to study combustion processes by laser-spark emission spectrometry. The plasma radiation spectral characteristics an experimental study results formed in a flame when exposed to laser radiation are presented.

2021 ◽  
pp. 12-17
Author(s):  
M. A. Vaganov

It is proposed to use the methods of applied optical spectroscopy to solve the problem of control and diagnostics of gaseous hydrocarbon fuel combustion in this work. The results of an experimental study of spectroscopic informative parameters characterizing the propane combustion process are presented for three modes: combustion of pure propane without air supply, stoichiometric combustion and combustion with a change in the amount of supplied air relative to stoichiometric combustion. As a result of the experiment, it was found that the most intense bands in the emission spectrum of the flame arising from the combustion of propane correspond to the spectral bands of radicals of combustion products: OH, CH, and C2. While the intensities of various systems of bands in the flame spectrum depend significantly on the composition of the combustible mixture.


Author(s):  
Takahiro Gotou ◽  
Toshihiko Yamada ◽  
Takashi Kiga ◽  
Nobuhiro Misawa ◽  
Keiichiro Hashimoto

Oxy-fuel combustion is expected to be one of the promising systems on CO2 capture from pulverized-coal fired power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 capture process with the power generation from the results of previous study. Some studies in this area are implemented under Australia-Japan consortium established in 2004 and joint venture for Callide Oxy-fuel Project under Australia-Japan consortium is established in March 2008. The project is now under way for the retrofit oxy-fuel combustion to an existing power plant by way of demonstration and is implemented in Callide-A power plant No.4 unit owned by CS Energy with a capacity of 30MWe in Australia. This project aims at capturing CO2 from an actual power plant for CO2 storage. The demonstration operation will start in 2011. One of the key issues to achieve the reliable and stable operation is countermeasure against corrosion. Recently, we studied the behaviors of corrosive substances in combustion gas and trace elements in flue gas, which is mainly sulfur compounds and Hg respectively. Sulfur compounds causes corrosion of boiler tubes, and Hg causes corrosion of aluminum base heat exchangers in the CO2 processing unit. Knowledge of their behaviors in oxyfuel is insufficient, and obtaining their knowledge is important for suitable material selection, countermeasure against corrosion, and optimal process design. In order to confirm the behaviors of corrosion components and Hg, the pilot-scale combustion test in IHI is performed at the combustion test facilities; the capacity of the furnace is 1.2MWt. The combustion test is conducted under oxy-fuel and air combustion conditions because of confirmation of the difference in both conditions. In this paper, the behaviors of corrosion components and Hg in the oxy-fuel combustion process are introduced. These results obtained in this study can significantly contribute to the design and the improvement of the oxyfuel combustion process towards the commercialization.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022042
Author(s):  
M A Vaganov ◽  
V I Kazakov ◽  
V F Lebedev ◽  
A R Bestugin ◽  
V V Kitaev

Abstract The paper considers the applied optical spectroscopy methods application in the defluorinated phosphate production, controlling the technological process task. The emission spectral analysis using the method possibilities to control the charge hydrothermal acid processing process, which takes place in special furnaces with natural gas burning and a temperature of 1340 – 1400°C, have been studied. Experiments have been carried out in production conditions, and the radiation spectral characteristics study results from the furnace during the defluorination technological process are presented. It is shown that, by measuring individual spectral lines, it is possible to provide an automatic control mode for the defluorination technological process in the furnace burner controlling the combustion mode terms without the need for visual observation by the operator to ensure a better product yield. The work second part is devoted to the defluorinated phosphate chemical composition study by the laser-spark emission spectrometry method (LIBS). The LIBS method application for the defluorinated phosphate chemical composition analysis is proposed, which allows the production process parameters real-time control. The plasma spectra measurement and interpretation results from the ready-made defluorinated phosphate sample, obtained using the LIBS method, are presented.


2020 ◽  
pp. 15-21
Author(s):  
R.A. Tsarapkin ◽  
V.N. Ivanov ◽  
V.I. Biryukov

An experimental method is proposed for estimating the damping decrements of pressure fluctuations in the combustion chambers of forced rocket engines. The method is based on the statistical processing of noise pressure pulsations in the vicinity of natural resonance frequencies for normal modes of acoustic vibrations of the reaction volume and the subsequent prediction of the instability of the combustion process relative to acoustic vibrations. Based on the theory of statistical regression for multidimensional experimental data, the problem of predicting unknown parameters of sample distributions is solved by asymptotic determination of the correlation coefficient of the damping decrement of pressure vibrations through optimal linear predictors and the Kolmogorov distribution. Keywords rocket engine, combustion chamber, acoustic vibrations, combustion noise, spectral characteristics, Kolmogorov criterion, damping decrement. [email protected]


2014 ◽  
Vol 13 (2) ◽  
pp. 5-17
Author(s):  
Agnieszka Bok ◽  
Joanna Guziałowska-Tic ◽  
Wilhelm Jan Tic

Abstract The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides). The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.


2012 ◽  
Vol 38 (6) ◽  
pp. 503-512 ◽  
Author(s):  
P. V. Kopyl ◽  
O. S. Surkont ◽  
V. M. Shibkov ◽  
L. V. Shibkova

Sign in / Sign up

Export Citation Format

Share Document