scholarly journals Average SWCNT bundle length estimated by resistance measurement

2021 ◽  
Vol 2103 (1) ◽  
pp. 012131
Author(s):  
D M Mitin ◽  
A.A. Vorobyev ◽  
Y S Berdnikov ◽  
A M Mozharov ◽  
A G Nasibulin ◽  
...  

Abstract The length of single-walled carbon nanotubes (SWCNTs) affects the optoelectronic and mechanical properties of macroscopic SWCNT layers. Modern methods are capable to measure the length of short nanotubes, and also require complex sample preparation procedures. In this work we show that the average length of SWCNTs can be estimated by measuring the resistance of randomly oriented SWCNTs array. We observe the change in the slope of the resistance dependence on the distance between the contacts with the interval between 100 and 200 μm. The change of resistance slope indicates a change in the path of current flow through the SWCNT. The change in the conduction path can be associated with the “effective bundle length”, which should be related to the average nanotube length. Thus, we have demonstrated a simple and quick technique to measure SWCNT bundle length, which can be used in-situ and does not require special sample preparation.

Author(s):  
Amit Kumar ◽  
Amit K. Thakur ◽  
Rahul Kumar ◽  
Pranava Chaudhari ◽  
M.D. Aurangzeb ◽  
...  

2016 ◽  
Vol 52 (79) ◽  
pp. 11834-11837 ◽  
Author(s):  
S. A. James ◽  
R. Burke ◽  
D. L. Howard ◽  
K. M. Spiers ◽  
D. J. Paterson ◽  
...  

Here we develop a measurement scheme to determine the abundance, distribution, and coordination environment of biological copper complexes in situ, without need for complex sample preparation.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Jim Colvin ◽  
Timothy Hazeldine ◽  
Heenal Patel

Abstract The standard requirement for FA Engineers needing to remove components from a board, prior to decapsulation or sample preparation, is shown to be greatly reduced, by the methods discussed here. By using a mechanical selected area preparation system with an open-design it is possible to reach all required areas of a large printed circuit board (PCB) or module to prepare a single component ‘in situ’. This makes subsequent optical or electrical testing faster and often more convenient to accomplish. Electronic End-pointing and 3D curvature compensation methods can often be used in parallel with sample prep techniques to further improve the consistency and efficacy of the decapsulation and thinning uniformity and final remaining silicon thickness (RST). Board level prep eliminates the worry of rework removal of BGA packages and the subsequent risk of damage to the device. Since the entire board is mounted, the contamination is restricted to the die surface and can be kept from the underside ball connections unlike current liquid immersion methods of package thinning or delayering. Since the camera is in line with the abrasion interface, imaging is real time during the entire milling and thinning process. Recent advances in automated tilt-table design have meant that a specific component’s angular orientation can be optimized for sample preparation. Improved tilt table technology also allows for improved mounting capability for boards of many types and sizes. The paper describes methods for decapsulation, thinning and backside polishing of a part ‘in situ’ on the polishing machine and allows the system to operate as a probe station for monitoring electrical characteristics while thinning. Considerations for designing board-level workholders are described – for boards that that are populated with components on one or even both sides. Using the techniques described, the quality of sample preparation and control is on a par with the processing of single package-level devices.


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


2020 ◽  
Vol 6 (8(77)) ◽  
pp. 21-23
Author(s):  
S.N. Sarmasov ◽  
R.Sh. Rahimov ◽  
T.Sh. Abdullayev

The effect of oxygen adsorption on the conductivity of PbTe films is studied. Pn junctions based on PbTe films are photosensitive in the IR spectral region with a maximum photosensitivity of 𝜆𝑚𝑎𝑥 microns. The tunneling mechanism of current flow through the pn junction is shown.


Author(s):  
Ari Ramadhani

Abstract - Automatic system have grown widespread across all sector so do water heater. Traditionally, heating water is done by utilizing fire as heat source. As the growing of technology, the heating process could be done by manipulating electrical energy by convert it to heat. Electrical energy is flown to a metal rod that contact directly with the water which increase the water temperature. On some case, appropiate water temperature is needed. Altough, a thermometer is needed to read the actual temperature as a feedback value for the system and a system that can control the electricity current flow through the heater that the heat produced is linear to the current flow. With implementing microcontroller as a process node for generating PWM signal, this problem can be solved. Also, Labview is needed as an interface for monitoring and bursting an output which have been processed by Proportional, Integral, and Devivative (PID) controller to producing accurate and stable heat. Based on the results of testing, the system is able to provide a rapid response to any changes that occur, both changes in set-point and changes in water temperature (actual value). Another test is done by comparing the temperature value detected by the temperature sensor in this device with an external digital thermometer placed in the same place, and from some of the tests the temperature value detected by the temperature sensor in this device has a difference of ± 0.19 ℃ with a digital thermometer. Keyword : Water Heater, Thermometer, Microcontroller, LabView, PID.


Hydrobiologia ◽  
1989 ◽  
Vol 188-189 (1) ◽  
pp. 277-283 ◽  
Author(s):  
C. Lindblad ◽  
U. Kautsky ◽  
C. André ◽  
N. Kautsky ◽  
M. Tedengren

RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1109-1114
Author(s):  
Peng Lv ◽  
Yeyun Meng ◽  
Lingxia Song ◽  
Hao Pang ◽  
Weiqu Liu

A robust self-supported electrode was prepared by a facile combination of ultrasonic dispersion and consequent in situ polymerization.


Sign in / Sign up

Export Citation Format

Share Document