Bubble Formation and Detachment Under the Influence of Electric Fields and the Role of Gravity

Author(s):  
C. Herman ◽  
Z. Liu ◽  
E. Iacona

Boiling is an attractive solution to cooling problems in aerospace engineering because of the high heat transfer coefficients associated with phase change processes. Bubble detachment from an orifice shows some resemblance to bubble departure in boiling. The buoyancy force is responsible for bubble removal from the surface in terrestrial conditions. In space, with the gravity level being orders of magnitude smaller than on earth, bubbles formed during boiling can remain attached to the surface. As a result, the amount of heat removed from the heated surface can decrease, and it is difficult to predict reliably and accurately. The impact of electric fields is investigated with the aim to control bubble behavior and help bubble removal from the surface on which they form in reduced gravity. The behavior of single gas bubbles injected through an orifice into an electrically insulating liquid is studied in reduced gravity under the influence of static electric fields and the results of the experiments are compared with data obtained using a simplified model. The bubble life cycle was visualized in terrestrial conditions and reduced gravity. Bubble departure, volume and dimensions at detachment were measured and analyzed for different parameters such as gravity level, electric field magnitude and electric field uniformity. Results suggest that these parameters significantly affect bubble behavior, shape, volume and dimensions at detachment.

Author(s):  
Cila Herman

The high heat transfer rates associated with phase-change processes, such as boiling, make them an attractive solution in a range of industrial operations. In terrestrial conditions, the buoyancy force is responsible for bubble removal from the surface, which is essential for heat removal from the surface. Since in space the gravity level is orders of magnitude smaller than on earth, bubbles formed during boiling remain attached at the surface and they also show a tendency to coalesce. As a result, the amount of heat removed from the heated surface is different from terrestrial conditions and it can decrease considerably.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Jixing Sun ◽  
Sibo Song ◽  
Xiyu Li ◽  
Yunlong Lv ◽  
Jiayi Ren ◽  
...  

A conductive metallic particle in a gas-insulated metal-enclosed system can charge through conduction or induction and move between electrodes or on insulating surfaces, which may lead to breakdown and flashover. The charge on the metallic particle and the charging time vary depending on the spatial electric field intensity, the particle shape, and the electrode surface coating. The charged metallic particle can move between the electrodes under the influence of the spatial electric field, and it can discharge and become electrically conductive when colliding with the electrodes, thus changing its charge. This process and its factors are mainly affected by the coating condition of the colliding electrode. In addition, the interface characteristics affect the particle when it is near the insulator. The charge transition process also changes due to the electric field strength and the particle charging state. This paper explores the impact of the coating material on particle charging characteristics, movement, and discharge. Particle charging, movement, and charge transfer in DC, AC, and superimposed electric fields are summarized. Furthermore, the effects of conductive particles on discharge characteristics are compared between coated and bare electrodes. The reviewed studies demonstrate that the coating can effectively reduce particle charge and thus the probability of discharge. The presented research results can provide theoretical support and data for studying charge transfer theory and design optimization in a gas-insulated system.


Author(s):  
Alexey A. Eronin ◽  
Stanislav P. Malyshenko ◽  
Anton I. Zhuravlev

Characteristics of heat transfer and hydrodynamics of boiling of liquid nitrogen on the surfaces with different types of non-uniformities at the presence of external electric fields are experimentally investigated. It is shown that the formation of field traps is a major mechanism of heat transfer enhancement. And this effect result in noticeable change of two-phase hydrodynamics in vicinity of heated surface.


10.14311/478 ◽  
2003 ◽  
Vol 43 (5) ◽  
Author(s):  
H.-P. Geromiller ◽  
A. Farschtschi

The influence of electromagnetic radiation from mobile antennas on humans is under discussion in va'rious groups ofscientists, This paper deals with the impact ofelectromagnetic radiation in a housing space. The space is assumedto be bordered by 5 walls of ferroconcrete and a door-window combination on the 6th side, the latter to be electromagnetically transparent. The transparent side of the housing is exposed to an electromagnetic wave. As the source ofradiation is considered to be far away from the housing, the radiation is regarded to be from a plane wave. Due to the high signal frequency and ferroconcrete walls, 5 sides ofthe housing space are considered to be perfect conductors. The electric field inside the housing is calculated numerically by the method of finite differences for different angles of incidence of the radiated electromagnetic wave. The maximum value of the calculated electric field is outlined in a diagram.


Author(s):  
Yaozu Song ◽  
Feng Chen ◽  
Yao Peng

It has been well-known that externally imposed static electric fields have a significant effect on bubble dynamic behavior, especially on bubble departure behavior. With increasing electric field strength, bubble detachment volume decreases and bubble shape elongates along the electric field direction. It is electric field forces that change bubble behavior. The electric field forces can be calculated from theoretical formula for a simple electrode structure. However, for the complex electrode system, it is rather a tough thing to theoretically solve electric field forces. In this work a new method to experimentally estimate electric field forces exerted on a single bubble has been presented. Experimental estimation primarily depends upon decreasing in the buoyancy on the bubble. Furthermore, the calculations coming from theoretical formula have also been completed and the results show that experimental estimations agree well with theoretical calculations.


2018 ◽  
Vol 36 (2) ◽  
pp. 609-620 ◽  
Author(s):  
Mangalathayil A. Abdu ◽  
Paulo A. B. Nogueira ◽  
Angela M. Santos ◽  
Jonas R. de Souza ◽  
Inez S. Batista ◽  
...  

Abstract. Equatorial plasma bubble/spread F irregularity occurrence can present large variability depending upon the intensity of the evening prereversal enhancement in the zonal electric field (PRE), that is, the F region vertical plasma drift, which basically drives the post-sunset irregularity development. Forcing from magnetospheric disturbances is an important source of modification and variability in the PRE vertical drift and of the associated bubble development. Although the roles of magnetospheric disturbance time penetration electric fields in the bubble irregularity development have been studied in the literature, many details regarding the nature of the interaction between the penetration electric fields and the PRE vertical drift still lack our understanding. In this paper we have analyzed data on F layer heights and vertical drifts obtained from digisondes operated in Brazil to investigate the connection between magnetic disturbances occurring during and preceding sunset and the consequent variabilities in the PRE vertical drift and associated equatorial spread F (ESF) development. The impact of the prompt penetration under-shielding eastward electric field and that of the over-shielding, and disturbance dynamo, westward electric field on the evolution of the evening PRE vertical drift and thereby on the ESF development are briefly examined. Keywords. Ionosphere (ionospheric irregularities)


Author(s):  
Adedayo Otunola ◽  
Ayman El-Hag ◽  
Shesha Jayaram ◽  
William A Anderson

A study was conducted to assess the effectiveness of pulsed electric field (PEF) inactivation of a heterogeneous community of microbes. The aim was to assess the impact of process parameters on an indigenous population of microbes present in milk, rather than pure cultures used in other studies. Tests over an electric field strength range of 10 – 40 kV/cm and 10 to 120 pulses per millilitre showed that high electric field strength and pulse number inactivated microbes by up to approximately 2 log. Inoculum size affected PEF effectiveness when only a few pulses were applied. A significant log-reduction was achieved against the indigenous microbes found in milk that were apparently recalcitrant to commercial pasteurization. Microbial inactivation was more extensive when E. coli was not added to the indigenous population, indicating that the added pure culture was more resistant than the indigenous microbes. The milk fat content had a significant negative effect on the extent of log-reduction for indigenous microbes, when 2% and 18% levels were compared.


2021 ◽  
Author(s):  
Julia Stawarz ◽  
Lorenzo Matteini ◽  
Tulasi Parashar ◽  
Luca Franci ◽  
Jonathan Eastwood ◽  
...  

<p><span>Electric fields (<strong>E</strong>) play a fundamental role in facilitating the exchange of energy between the electromagnetic fields and the changed particles within a plasma. </span>Decomposing <strong>E</strong> into the contributions from the different terms in generalized Ohm's law, therefore, provides key insight into both the nonlinear and dissipative dynamics across the full range of scales within a plasma. Using the unique, high‐resolution, multi‐spacecraft measurements of three intervals in Earth's magnetosheath from the Magnetospheric Multiscale mission, the influence of the magnetohydrodynamic, Hall, electron pressure, and electron inertia terms from Ohm's law, as well as the impact of a finite electron mass, on the turbulent electric field<strong> </strong>spectrum are examined observationally for the first time. The magnetohydrodynamic, Hall, and electron pressure terms are the dominant contributions to <strong>E</strong> over the accessible length scales, which extend to scales smaller than the electron gyroradius at the greatest extent, with the Hall and electron pressure terms dominating at sub‐ion scales. The strength of the non‐ideal electron pressure contribution is stronger than expected from linear kinetic Alfvén waves and a partial anti‐alignment with the Hall electric field is present, linked to the relative importance of electron diamagnetic currents within the turbulence. The relative contributions of linear and nonlinear electric fields scale with the turbulent fluctuation amplitude, with nonlinear contributions playing the dominant role in shaping <strong>E</strong> for the intervals examined in this study. Overall, the sum of the Ohm's law terms and measured <strong>E</strong> agree to within ∼ 20% across the observable scales. The results both confirm a number of general expectations about the behavior of <strong>E</strong> within turbulent plasmas, as well as highlight additional features that may help to disentangle the complex dynamics of turbulent plasmas and should be explored further theoretically.</p>


Author(s):  
Cila Herman ◽  
Shinan Chang ◽  
Estelle Iacona

The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.


Author(s):  
Evelyn N. Wang ◽  
Juan G. Santiago ◽  
Kenneth E. Goodson ◽  
Thomas W. Kenny

The large heat generation rates in contemporary microprocessors require new thermal management solutions. Two-phase microjet impingement cooling promises high heat transfer coefficients and effective cooling of hotspots. We have fabricated integrated microjet structures with heaters and temperature sensors to study local heat transfer at the impingement surface of a confined microjet. Circular jets with diameters less than 100 μm are machined in glass. Preliminary temperature measurements (for Rej = 100–500) suggest that heat transfer coefficients of 1000 W/m2C close to the jet stagnation zone can be achieved. As the flowrate of the jet is increased, a tradeoff in heat removal capability and wall superheat is observed. To aid in understanding the mechanism for wall superheat during boiling at the heated surface, the devices allow for optical access through the top of the device. However, the formation of vapor from the top reservoir makes visualization difficult. This study aids in the design of microjet heat sinks used for integration into a closed-loop cooling system.


Sign in / Sign up

Export Citation Format

Share Document