scholarly journals Performance evaluation of thermoelectric generators under cyclic heating

2021 ◽  
Vol 2116 (1) ◽  
pp. 012087
Author(s):  
N P Williams ◽  
L Roumen ◽  
G McCauley ◽  
S M O’Shaughnessy

Abstract The effect of thermal cycling on thermoelectric generator (TEG) performance is investigated for six nominally identical samples subjected to the same heating cycle profile. All TEGs experienced performance degradation, with maximum power outputs between 28 % and 49 % of pre-cycling values and a post-cycling decrease in the dimensionless figure of merit ZT of 21 % to 49 %. Sudden significant power reductions and subsequent internal resistance increases were observed for all samples, indicative of internal damage to the structure of the TEGs arising from material interface separation and micro-crack formation.

Author(s):  
Mehmet Akif Kunt ◽  
Haluk Gunes

In this study, a thermoelectric recovery system was designed to convert the exhaust waste heat of an internal combustion diesel engine directly to electric power and the performance was measured at different engine speeds in the unloaded state. The performances of two different thermoelectric generators were compared in a system designed using four modules. Maximum 0.92 W power was obtained for four modules at 3500 r/min, at an area of 0.0016 m2. Internal resistance of modules has increased according to the engine speed. The highest internal resistance obtained during the experiments is 11.69 Ω at engine speed of 3500 r/min. The characteristics of the overall thermoelectric generator performance is coherent with the analysis model. In the current graph according to engine speed, the maximum absolute error is calculated for modules TEG 12-8 and TEG1-199 as 0.010 and 0.044, respectively (at experimented 3500 r/min). To charge the battery under maximum power point conditions, 133 thermoelectric modules were required (TEG1-199). Maximum power transfer is obtained when the load resistor is connected in parallel at 10 Ω. It is seen that modular structure thermoelectric generators are more important alternative than Rankine cycle system in terms of waste heat recovery, despite thermoelectric system has low efficiency.


2021 ◽  
pp. 184-184
Author(s):  
Yanzhe Li ◽  
Shixue Wang ◽  
Yunchi Fu ◽  
Yulong Zhao ◽  
Like Yue

In this study, the effect of enhancing the core flow heat transfer with metal foam on the performance of thermoelectric generators with different power generation characteristics is studied experimentally. Filling the core flow area of the gas channel in a thermoelectric generator with metal foam can greatly improve the heat transfer capacity of the gas channel with a small pressure loss, thereby improving the power generation efficiency. The results show that, first, the heat transfer enhancement achieved by partially filling the core area of the gas channel with metal foam can significantly improve the performance of thermoelectric generators, the maximum output power is about 1.5 times higher than that of the unfilled channel. Second, for a thermoelectric generator with different modules, the friction coefficient for different filling ratios increases by about 16 times at most, while the Nu value increases by only three times at most, and according to the PEC of the gas channel, metal foam with high filling rate and low pore density is more suitable for the thermoelectric generator. Third, it is more appropriate to use the thermoelectric module with a high figure of merit as the selection criterion for deciding whether to adopt the technique of enhancing heat exchange through the gas channel. The maximum output power and efficiency of the thermoelectric generator using the high figure of merit module are 300% and 160% higher than those of the thermoelectric generator using the low figure of merit module, respectively.


2015 ◽  
Vol 2 (1-2) ◽  
Author(s):  
Christian Dreßler ◽  
Arne Bochmann ◽  
Thomas Schulz ◽  
Timmy Reimann ◽  
Jörg Töpfer ◽  
...  

AbstractThe concepts of dual leg, unileg and transversal oxide thermoelectric harvesting devices were compared with regard to the dimensionless figure of merit calculated from published data on common dual leg oxide thermoelectric generators. The analysis shows that the application of the transversal thermoelectric effect does not significantly reduce the expected electrical output power density of thermoelectric devices utilizing thermoelectric oxides. At the same time, the transversal device layout is simple in comparison to the common dual leg device. A transversal thermoelectric harvester consisting of a tilted multilayer stack La


2008 ◽  
Vol 1102 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
C. Muntele ◽  
D. ILA

AbstractWe have deposited 50 nano-layers of 710 nm of SiO2/SiO2+ZrNiSn with a periodic structure consisting of alternating layers where each layer is about 14 nm thick. The purpose of this research is to generate nanolayers of nanostructures of ZrNiSn with SiO2 as host and as buffer layer using a combination of co-deposition and MeV ion bombardment taking advantage of the energy deposited in the MeV ions track to nucleate nanostructures. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/ĸ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and ĸ is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing ĸ. The electrical and thermal properties of the layered structures were studied before and after bombardment by 5 MeV Si ions at seven different fluences ranging from 1014 to 1015 ions/cm2 in order to form nanostructures in layers of SiO2 containing few percent of ZrNiSn. Rutherford Backscattering Spectrometry (RBS) was used to monitor elemental analysis of the film.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
John Mativo ◽  
Kevin Hallinan ◽  
Uduak George ◽  
Greg Reich ◽  
Robin Steininger

Abstract Typical thermoelectric generator legs are brittle which limits their application in vibratory and shear environments. Research is conducted to develop compliant thermoelectric generators (TEGs) capable of converting thermal loads to power, while also supporting shear and vibratory loads. Mathematical structural, thermal, and power conversion models are developed. Topology optimization is employed to tailor the TEG design yield maximal power production while sustaining the applied shear and vibratory loads. As a specific example, results are presented for optimized TEG legs with a void volume fraction of 0.2 that achieve compliance shear displacement of 0.0636 (from a range of 0.0504 to 0.6079). In order to achieve the necessary compliance to support the load, the power reduction is reduced by 20% relative to similarly sized void free TEG legs.


2018 ◽  
Vol 5 (10) ◽  
pp. 180698 ◽  
Author(s):  
En-Yu Liu ◽  
Fei-Hung Lin ◽  
Zong-Ren Yang ◽  
Chia-Jyi Liu

A facile energy-saving route is developed for fabricating Sb 2 Te 3 -Te nanocomposites and nanosized Te powders. The fabrication route not only avoids using organic chemicals, but also keeps the energy consumption to a minimum. The fabrication procedure involves two steps. Energetic precursors of nanosized powders of Sb and Te are produced at room temperature followed by hot pressing at 400°C under 70 MPa for 1 h. The resulting Sb 2 Te 3 -Te nanocomposite exhibits enhanced power factor. The dimensionless figure of merit zT value of the Sb 2 Te 3 -Te nanocomposite is 0.29 at 475 K.


2014 ◽  
Vol 663 ◽  
pp. 299-303 ◽  
Author(s):  
Ubaidillah ◽  
Suyitno ◽  
Imam Ali ◽  
Eko Prasetya Budiana ◽  
Wibawa Endra Juwana

Thermoelectric generator is solid-state device which convert temperature difference, ∆T into electrical energy based on Seebeck effect phenomenon. The device has been widely used in self-powered system applications. This paper focuses on presentation of methodology for characterizing thermoelectric generators. The measurement of its behavior is performed by varying load resistances. A standard module of thermoelectric generator (TEC1-12710) is used in examination and an instrument setup consists of controllable heat source, controllable cooler, personal computer, data logger MCC DAQ USB-1208LS equipped with two sets of K-type thermocouples. The experiment is performed by measuring output voltage and output current in 4 values of temperature gradient by applying 10 values of resistive loads connected to the thermoelectric output wires. The common parameters studied in this research are output voltage, current and power. Generally, the relationship between parameters agrees with the basic theory and the procedure can be adopted for characterizing other type of thermoelectric generator.


Sign in / Sign up

Export Citation Format

Share Document