scholarly journals Lumped parameter modelling of two-phase ejectors: numerical implications of the equilibrium assumptions

2021 ◽  
Vol 2116 (1) ◽  
pp. 012089
Author(s):  
Giorgio Besagni

Abstract The use of carbon dioxide as refrigerant is attracting a growing attention and is a cutting-edge research topic. In spite of its many advantages, carbon dioxide has a major shortcoming, viz., low critical temperature. Owing to the low critical temperature, carbon dioxide cycles encompass both the sub-critical and the trans-critical operation conditions; the trans-critical operating conditions are characterized by high thermodynamic losses, requiring particular attention in the integrated component/system design criteria. In this perspective, in recent years, ejector technology has been widely recognized as a promising technical solution to support the deployment of carbon dioxide cycles, by reducing throttling losses. Unfortunately, the large variation in system operations as well as the changes in sub-critical and trans-critical operating conditions makes the numerical simulation of carbon dioxide ejector-based system a cutting-edge challenge. This paper contributes to the present day discussion on the validation of lumped parameter models for carbon dioxide ejectors. A model taken from the literature has been tested against literature data and the equilibrium assumptions, underlying the modelling approach have been tested.

Author(s):  
Chang Hyeon Lim ◽  
Gokul Pathikonda ◽  
Sandeep Pidaparti ◽  
Devesh Ranjan

Abstract Supercritical carbon dioxide (sCO2) power cycles have the potential to offer a higher plant efficiency than the traditional Rankine superheated/supercritical steam cycle or Helium Brayton cycles. The most attractive characteristic of sCO2 is that the fluid density is high near the critical point, allowing compressors to consume less power than conventional gas Brayton cycles and maintain a smaller turbomachinery size. Despite these advantages, there still exist unsolved challenges in design and operation of sCO2 compressors near the critical point. Drastic changes in fluid properties near the critical point and the high compressibility of the fluid pose several challenges. Operating a sCO2 compressor near the critical point has potential to produce two phase flow, which can be detrimental to turbomachinery performance. To mimic the expanding regions of compressor blades, flow through a converging-diverging nozzle is investigated. Pressure profiles along the nozzle are recorded and presented for operating conditions near the critical point. Using high speed shadowgraph images, onset and growth of condensation is captured along the nozzle. Pressure profiles were calculated using a one-dimensional homogeneous equilibrium model and compared with experimental data.


Author(s):  
Hector Hernandez Lopez ◽  
Javier Ortiz Villafuerte

Currently, at the Instituto Nacional de Investigaciones Nucleares (National Institute for Nuclear Research) in Mexico, it is being developed a computational code for evaluating the neutronic, thermal and mechanical performance of a fuel element at several different operation conditions. The code is referred as to MCTP (Multigrupos con Temperaturas y Potencia), and is benchmarked against data from the Laguna Verde Nuclear Power Plant (LVNPP). In the code, the neutron flux is approximated by six groups of energy: one group in the thermal region (E < 0.625 eV), four in the resonances region (0.625 eV < E < 0.861 MeV), and one group in the fast region (E > 0.861 MeV). Thus, the code is able to determine the damage to the cladding due to fast neutrons. The temperature distribution is approximated in both axial and radial directions taking into account the changes in the coolant density, for both the single and two-phase regions in a BWR channel. It also considerate the changes in the thermal conductivity of all materials involved for the temperature calculations, as well as the temperature and density effects in the neutron cross sections. In the code, fuel rod burnup is evaluated. Also, plutonium production and poison production from fission. In this work, the neutronic and thermal performance of fuel rods in a 10×10 fuel assembly is evaluated. The fuel elements have a content of 235U. The fuel assembly was introduced to the unit 1 of LVNPP reactor core in the cycle 9 of operation, and will stay in during three cycles. In the analysis of fuel rod performance, the operating conditions are those for the cycle 9 and 10, whereas for the current cycle (cycle 11) the reactor is projected to operate during 460 days. The analysis for cycle 11 uses the actual location of the fuel assembly that will have in the core. The results show that the fuel rods analyzed did not reach the thermal limits during the cycles 9 and 10, as expected, and for cycle 11 the same thermal limits are not predicted to be reached.


Author(s):  
Julián Restrepo ◽  
Jose R. Simões-Moreira

Abstract One of the several challenges of the oil and natural gas offshore extraction in pre-salt reserves in Brazil, is the high content of carbon dioxide inside the wells, reaching values close to 80% in a molar fraction. This issue has a big impact on the crude extraction, due to the necessity of further expensive equipment occupying considerable deck space in platforms. Therefore, it is necessary to research and find new technologies, which allow separating high contents of carbon dioxide at low energy consumption and low maintenance. The supersonic separation concept fulfils all these requirements due to the absence of moving parts and simple operation, because its working principle is based on the strong temperature drop of gas mixtures at supersonic expansion as it occurs in de Laval nozzles. Eventually, at the right operating conditions, the mixture starts to nucleate and, therefore, it will drive the phase change. Nevertheless, the physical phenomena involved in this device is complex, because it involves phase change at supersonic speeds, which comprise compressible, multispecies, and multiphase flow. This paper analyses the threshold of the phase change at supersonic speeds. The objective of this work is to calculate the influence of operation conditions (pressure, temperature and composition) in the phase change performance in supersonic separators. The phase change was modelled using the classical theory of homogeneous nucleation. In this approach allows to estimate the phase change inside the supersonic flow for different operating conditions and allows to establish operating strategies to ensure low Mach numbers (M < 1.5) in the phase change region, allowing a further pressure recovery.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3204 ◽  
Author(s):  
Daniel Sánchez ◽  
Jesús Catalán-Gil ◽  
Ramón Cabello ◽  
Daniel Calleja-Anta ◽  
Rodrigo Llopis ◽  
...  

In the last century, the refrigerant R744 (carbon dioxide) has become an environmentally friendly solution in commercial refrigeration despite its particular issues related to the low critical temperature. The use of transcritical cycles in warm and hot countries reveals the necessity of adopting different configurations and technologies to improve this specific cycle. Among these, subcooling methods are well-known techniques to enhance the cooling capacity and the Coefficient of Performance (COP) of the cycle. In this work, an R600a dedicated mechanical subcooling system has been experimentally tested in an R744 transcritical system at different operating conditions. The results have been compared with those obtained using a suction-to-liquid heat exchanger (IHX) to determine the degree of improvement of the mechanical subcooling system. Using the experimental tests, a computational model has been developed and validated to predict the optimal subcooling degree and the cubic capacity of the mechanical subcooling compressor. Finally, the model has been used to analyze the effect of using different refrigerants in the mechanical subcooling unit finding that the hydrocarbon R290 and the HFC R152a are the most suitable fluids.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 581
Author(s):  
Yongbae Kim ◽  
Juyong Back ◽  
Jongweon Kim

A tachograph in a vehicle records the vehicle operating conditions, such as speed, distance, brake operation conditions, acceleration, GPS information, etc., in intervals of one second. For accidents, the tachograph records information, such as the acceleration and direction of a vehicle traveling in intervals of 1/100 s for 10 s before and after the accident occurs as collision data. A vehicle equipped with a tachograph is obliged to upload operation data to administrative organizations periodically via other auxiliary storage devices like a USB attached external memory or online wireless communication. If there is a problem with the recorded contents, data may be at risk of being tampered with during the uploading process. This research proposed tamper-resistant technology based on blockchain for data in online and offline environments. The suggested algorithm proposed a new data recording mechanism that operates in low-level hardware of digital tachographs for tamper-resistance in light blockchains and on/offline situations. The average encoding time of the proposed light blockchain was 1.85 ms/Mb, while the average decoding time was 1.65 ms/Mb. With the outliers in statistical tests removed, the estimated average encoding and decoding time was 1.32 ms/Mb and 1.29 ms/Mb, respectively, and the tamper verification test detected all the tampered data.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Mirosław K. Szukiewicz ◽  
Krzysztof Kaczmarski

A dynamic model of the hydrogenation of benzene to cyclohexane reaction in a real-life industrial reactor is elaborated. Transformations of the model leading to satisfactory results are presented and discussed. Operating conditions accepted in the simulations are identical to those observed in the chemical plant. Under those conditions, some components of the reaction mixture vanish, and the diffusion coefficients of the components vary along the reactor (they are strongly concentration-dependent). We came up with a final reactor model predicting with reasonable accuracy the reaction mixture’s outlet composition and temperature profile throughout the process. Additionally, the model enables the anticipation of catalyst activity and the remaining deactivated catalyst lifetime. Conclusions concerning reactor operation conditions resulting from the simulations are presented as well. Since the model provides deep insight into the process of simulating, it allows us to make knowledge-based decisions. It should be pointed out that improvements in the process run, related to operating conditions, or catalyst application, or both on account of the high scale of the process and its expected growth, will remarkably influence both the profits and environmental protection.


Sign in / Sign up

Export Citation Format

Share Document