scholarly journals The effect of microtexture on the liquid flow over the sheets

2021 ◽  
Vol 2119 (1) ◽  
pp. 012017
Author(s):  
B V Perepelitsa

Abstract This work considers the method of the corrugated sheet arrangement near the column wall with the aim to limit liquid fall on the wall and increase liquid concentration in the near-wall area. Experiments were carried out at the corrugated Koch 1Y packing sheets for various liquid flow rates. This report presents experimental results on the character of liquid flow near the edge of corrugated sheets and the effect of the middle sheet shift from the edge of the packing. The ribs of this sheet are directed downward to the edge of the packing. Test was performed for two positions of the middle sheet: to study the effect of microtexture orientation at the sheet, whose ribs are directed downward to the packing edge, on liquid distribution under the packing. Experiments were carried out for liquid flow rates of 1-12 ml/s.

2015 ◽  
Vol 7 (9) ◽  
pp. 3981-3987 ◽  
Author(s):  
Wen-Chi Lin ◽  
Mark A. Burns

We have constructed micro-fabricated flow sensors that can measure water flow rates of 0.1 to 2.0 gallons per minute (GPM), and the experimental results we obtained are in good agreement with those from COMSOL simulations.


1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


1983 ◽  
Vol 105 (1) ◽  
pp. 29-33 ◽  
Author(s):  
A. M. Clausing

Cavity solar receivers are generally believed to have higher thermal efficiencies than external receivers due to reduced losses. A simple analytical model was presented by the author which indicated that the ability to heat the air inside the cavity often controls the convective loss from cavity receivers. Thus, if the receiver contains a large amount of inactive hot wall area, it can experience a large convective loss. Excellent experimental data from a variety of cavity configurations and orientations have recently become available. These data provided a means of testing and refining the analytical model. In this manuscript, a brief description of the refined model is presented. Emphasis is placed on using available experimental evidence to substantiate the hypothesized mechanisms and assumptions. Detailed comparisons are given between analytical predictions and experimental results. Excellent agreement is obtained, and the important mechanisms are more clearly delineated.


2012 ◽  
Vol 18 (3) ◽  
pp. 349-359
Author(s):  
Vijay Sodhi

The most of past studies in foaming trickle bed reactors aimed at the improvement of efficiency and operational parameters leads to high economic advantages. Conventionally most of the industries rely on frequently used gas continuous flow (GCF) where operational output is satisfactory but not yields efficiently as in pulsing flow (PF) and foaming pulsing flow (FPF). Hydrodynamic characteristics like regime transitions are significantly influenced by foaming nature of liquid as well as gas and liquid flow rates. This study?s aim was to demonstrate experimentally the effects of liquid flow rate, gas flow rates and liquid surface tension on regime transition. These parameters were analyzed for the air-aqueous Sodium Lauryl Sulphate and air-water systems. More than 240 experiments were done to obtain the transition boundary for trickle flow (GCF) to foaming pulsing flow (PF/FPF) by use excessive foaming 15-60 ppm surfactant compositions. The trickle to pulse flow transition appeared at lower gas and liquid flow rates with decrease in liquid surface tension. All experimental data had been collected and drawn in the form of four different transitional plots which are compared and drawn by using flow coordinates proposed by different researchers. A prominent decrease in dynamic liquid saturation was observed especially during regime transitional change. The reactor two phase pressure evident a sharp rise to verify the regime transition shift from GCF to PF/FPF. Present study reveals, the regime transition boundary significantly influenced by any change in hydrodynamic as well as physiochemical properties including surface tension.


2008 ◽  
Vol 105 (6) ◽  
pp. 1733-1740 ◽  
Author(s):  
Santhosh T. Jayaraju ◽  
Manuel Paiva ◽  
Mark Brouns ◽  
Chris Lacor ◽  
Sylvia Verbanck

We investigated the axial dispersive effect of the upper airway structure (comprising mouth cavity, oropharynx, and trachea) on a traversing aerosol bolus. This was done by means of aerosol bolus experiments on a hollow cast of a realistic upper airway model (UAM) and three-dimensional computational fluid dynamics (CFD) simulations in the same UAM geometry. The experiments showed that 50-ml boluses injected into the UAM dispersed to boluses with a half-width ranging from 80 to 90 ml at the UAM exit, across both flow rates (250, 500 ml/s) and both flow directions (inspiration, expiration). These experimental results imply that the net half-width induced by the UAM typically was 69 ml. Comparison of experimental bolus traces with a one-dimensional Gaussian-derived analytical solution resulted in an axial dispersion coefficient of 200–250 cm2/s, depending on whether the bolus peak and its half-width or the bolus tail needed to be fully accounted for. CFD simulations agreed well with experimental results for inspiratory boluses and were compatible with an axial dispersion of 200 cm2/s. However, for expiratory boluses the CFD simulations showed a very tight bolus peak followed by an elongated tail, in sharp contrast to the expiratory bolus experiments. This indicates that CFD methods that are widely used to predict the fate of aerosols in the human upper airway, where flow is transitional, need to be critically assessed, possibly via aerosol bolus simulations. We conclude that, with all its geometric complexity, the upper airway introduces a relatively mild dispersion on a traversing aerosol bolus for normal breathing flow rates in inspiratory and expiratory flow directions.


2021 ◽  
pp. 1-31
Author(s):  
Xueliang Lu ◽  
Luis San Andres ◽  
Jing Yang

Abstract Seals in multiple phase rotordynamic pumps must operate without compromising system efficiency and stability. Both field operation and laboratory experiments show that seals supplied with a gas in liquid mixture (bubbly flow) can produce rotordynamic instability and excessive rotor vibrations. This paper advances a nonhomogeneous bulk flow model (NHBFM) for the prediction of the leakage and dynamic force coefficients of uniform clearance annular seals lubricated with gas in liquid mixtures. Compared to a homogeneous BFM (HBFM), the current model includes diffusion coefficients in the momentum transport equations and a field equation for the transport of the gas volume fraction (GVF). Published experimental leakage and dynamic force coefficients for two seals supplied with an air in oil mixture whose GVF varies from 0 (pure liquid) to 20% serve to validate the novel model as well as to benchmark it against predictions from a HBFM. The first seal withstands a large pressure drop (~ 38 bar) and the shaft speed equals 7.5 krpm. The second seal restricts a small pressure drop (1.6 bar) as the shaft turns at 3.5 krpm. The first seal is typical as a balance piston whereas the second seal is found as a neck-ring seal in an impeller. For the high pressure seal and inlet GVF = 0.1, the flow is mostly homogeneous as the maximum diffusion velocity at the seal exit plane is just ~0.1% of the liquid flow velocity. Thus, both the NHBFM and HBFM predict similar flow fields, leakage (mass flow rate) and drag torque. The difference between the predicted leakage and measurement is less than 5%. The NHBFM direct stiffness (K) agrees with the experimental results and reduces faster with inlet GVF than the HBFM K. Both direct damping (C) and cross-coupled stiffness (k) increase with inlet GVF < 0.1.Compared to the test data, the two models generally under predict C and k by ~ 25%. Both models deliver a whirl frequency ratio (fw) ~ 0.3 for the pure liquid seal, hence closely matching the test data. fw raises to ~0.35 as the GVF approaches 0.1. For the low pressure seal the flow is laminar, the experimental results and both NHBFM and HBFM predict a null direct stiffness (K). At an inlet GVF = 0.2, the NHBFM predicted added mass (M) is ~30 % below the experimental result while the HBFM predicts a null M. C and k predicted by both models are within the uncertainty of the experimental results. For operation with either a pure liquid or a mixture (GVF = 0.2), both models deliver fw = 0.5 and equal to the experimental finding. The comparisons of predictions against experimental data demonstrate the NHBFM offers a marked improvement, in particular for the direct stiffness (K). The predictions reveal the fluid flow maintains the homogeneous character known at the inlet condition.


Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 241 ◽  
Author(s):  
Takehiro Yamaki ◽  
Keigo Matsuda ◽  
Duangkamol Na-Ranong ◽  
Hideyuki Matsumoto

Our previous study reported that operation in multiple steady states contributes to an improvement in reaction conversion, making it possible to reduce the energy consumption of the reactive distillation process for tert-amyl methyl ether (TAME) synthesis. This study clarified the factors responsible for an improvement in the reaction conversion for operation in the multiple steady states of the reactive distillation column used in TAME synthesis. The column profiles for those conditions, in which multiple steady states existed and those in which they did not exist, were compared. The vapor and liquid flow rates with the multiple steady states were larger than those when the multiple steady states did not exist. The effect of the duty of the intermediate condenser, which was introduced at the top of the reactive section, on the liquid flow rate for a reflux ratio of 1 was examined. The amount of TAME production increased from 55.2 to 72.1 kmol/h when the intermediate condenser was operated at 0 to −5 MW. Furthermore, the effect of the intermediate reboiler duty on the reaction performance was evaluated. The results revealed that the liquid and vapor flow rates influenced the reaction and separation performances, respectively.


Lab on a Chip ◽  
2001 ◽  
Vol 1 (2) ◽  
pp. 115 ◽  
Author(s):  
Paul D. I. Fletcher ◽  
Stephen J. Haswell ◽  
Xunli Zhang

2021 ◽  
Author(s):  
Yongjia Zhu

The spatial variations of liquid distribution and local mass transfer coefficient in a 0.30-m column of 25.4-m Pall rings were investigated. The data of liquid distribution was collected with a 39-cell liquid collector and a wall-flow tube from a doubled-wall section in the column at the packing-support level. The local mass transfer coefficients were measured via the electrochemical technique by individual cathodic nickel-coated Pall rings placed at various spatial positions. Both measurements were conducted at various fluid flow rates with three liquid distributor designs at different bed heights. Liquid distribution and local mass transfer coefficients observed were far from uniform in the column. The wall flow developed along the packed bed until a fully developed flow pattern was reached. With more uniform initial liquid distribution, the less packing height needed to reach the fully developed flow pattern along with higher the mass transfer efficiency in the column. Ladder-type liquid distributor (LLD) showed less angular effect in measurements. Increasing the liquid flow rate slightly improved the uniformity of liquid distribution and enhanced the mass transfer. No influence of gas flow rate on liquid distribution and mass transfer coefficient was found at the range of gas flow rates used. These gas flow rates were much lower than the loading point. Liquid maldistribution factor and mass transfer maldistribution factor decreased with increases in the uniformity of the initial liquid distribution. These values were 0.21(0.48). 0.16(0.26) and 0.14(0.22) for single-point liquid distributor (SPLD), cross-type liquid distributor (CLD) and LLD, respectively. By comparison, a good agreement was observed on the relation of liquid maldistribution factor and mass transfer maldistribution factor.


2021 ◽  
Author(s):  
Yongjia Zhu

The spatial variations of liquid distribution and local mass transfer coefficient in a 0.30-m column of 25.4-m Pall rings were investigated. The data of liquid distribution was collected with a 39-cell liquid collector and a wall-flow tube from a doubled-wall section in the column at the packing-support level. The local mass transfer coefficients were measured via the electrochemical technique by individual cathodic nickel-coated Pall rings placed at various spatial positions. Both measurements were conducted at various fluid flow rates with three liquid distributor designs at different bed heights. Liquid distribution and local mass transfer coefficients observed were far from uniform in the column. The wall flow developed along the packed bed until a fully developed flow pattern was reached. With more uniform initial liquid distribution, the less packing height needed to reach the fully developed flow pattern along with higher the mass transfer efficiency in the column. Ladder-type liquid distributor (LLD) showed less angular effect in measurements. Increasing the liquid flow rate slightly improved the uniformity of liquid distribution and enhanced the mass transfer. No influence of gas flow rate on liquid distribution and mass transfer coefficient was found at the range of gas flow rates used. These gas flow rates were much lower than the loading point. Liquid maldistribution factor and mass transfer maldistribution factor decreased with increases in the uniformity of the initial liquid distribution. These values were 0.21(0.48). 0.16(0.26) and 0.14(0.22) for single-point liquid distributor (SPLD), cross-type liquid distributor (CLD) and LLD, respectively. By comparison, a good agreement was observed on the relation of liquid maldistribution factor and mass transfer maldistribution factor.


Sign in / Sign up

Export Citation Format

Share Document