Electrical currents and liquid flow rates in micro-reactors

Lab on a Chip ◽  
2001 ◽  
Vol 1 (2) ◽  
pp. 115 ◽  
Author(s):  
Paul D. I. Fletcher ◽  
Stephen J. Haswell ◽  
Xunli Zhang
1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


2012 ◽  
Vol 18 (3) ◽  
pp. 349-359
Author(s):  
Vijay Sodhi

The most of past studies in foaming trickle bed reactors aimed at the improvement of efficiency and operational parameters leads to high economic advantages. Conventionally most of the industries rely on frequently used gas continuous flow (GCF) where operational output is satisfactory but not yields efficiently as in pulsing flow (PF) and foaming pulsing flow (FPF). Hydrodynamic characteristics like regime transitions are significantly influenced by foaming nature of liquid as well as gas and liquid flow rates. This study?s aim was to demonstrate experimentally the effects of liquid flow rate, gas flow rates and liquid surface tension on regime transition. These parameters were analyzed for the air-aqueous Sodium Lauryl Sulphate and air-water systems. More than 240 experiments were done to obtain the transition boundary for trickle flow (GCF) to foaming pulsing flow (PF/FPF) by use excessive foaming 15-60 ppm surfactant compositions. The trickle to pulse flow transition appeared at lower gas and liquid flow rates with decrease in liquid surface tension. All experimental data had been collected and drawn in the form of four different transitional plots which are compared and drawn by using flow coordinates proposed by different researchers. A prominent decrease in dynamic liquid saturation was observed especially during regime transitional change. The reactor two phase pressure evident a sharp rise to verify the regime transition shift from GCF to PF/FPF. Present study reveals, the regime transition boundary significantly influenced by any change in hydrodynamic as well as physiochemical properties including surface tension.


Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 241 ◽  
Author(s):  
Takehiro Yamaki ◽  
Keigo Matsuda ◽  
Duangkamol Na-Ranong ◽  
Hideyuki Matsumoto

Our previous study reported that operation in multiple steady states contributes to an improvement in reaction conversion, making it possible to reduce the energy consumption of the reactive distillation process for tert-amyl methyl ether (TAME) synthesis. This study clarified the factors responsible for an improvement in the reaction conversion for operation in the multiple steady states of the reactive distillation column used in TAME synthesis. The column profiles for those conditions, in which multiple steady states existed and those in which they did not exist, were compared. The vapor and liquid flow rates with the multiple steady states were larger than those when the multiple steady states did not exist. The effect of the duty of the intermediate condenser, which was introduced at the top of the reactive section, on the liquid flow rate for a reflux ratio of 1 was examined. The amount of TAME production increased from 55.2 to 72.1 kmol/h when the intermediate condenser was operated at 0 to −5 MW. Furthermore, the effect of the intermediate reboiler duty on the reaction performance was evaluated. The results revealed that the liquid and vapor flow rates influenced the reaction and separation performances, respectively.


Author(s):  
Aleksey Garbaly ◽  
Thomas Shepard

Abstract For homogenous two-phase bubbly flows, the theoretical speed of sound is dramatically reduced at moderate void fractions to speeds much lower than the speed of sound for either single phase. This theoretical speed of sound would suggest a propensity for bubbly flows to reach choked conditions when traveling through a convergent nozzle. However, for a bubbly flow to be considered homogenous requires assumptions that may not be realized in practical applications. In this experimental study, a bubbly flow was sent through a convergent nozzle before entering a large chamber. By setting steady flow conditions upstream and then reducing the chamber pressure via a vacuum pump, the transient response in terms of gas and liquid flow rates and upstream channel pressure was determined. The bubble size was carefully varied from ∼0.3–1 mm while holding gas and liquid flow rates constant in order to study how bubble size affects the transient flow characteristics. High-speed imaging was used for measuring the bubbles. Experiments were also conducted at two gas-liquid mass flow ratios. Results are presented to demonstrate the impact of bubble size and gas-liquid ratio on the transient response of upstream gas and liquid flow rates, upstream pressure and exit Mach number to the lowering of pressure downstream of the convergent nozzle. Results are presented both for flows that remained in the bubbly regime and for flows that transitioned to an annular flow regime during a trial.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5793
Author(s):  
Eero Inkeri ◽  
Tero Tynjälä

The demand for carbon capture is increasing over time due to rising CO2 levels in the atmosphere. Even though fossil emission could be decreased or even eliminated, there is a need to start removing CO2 from the atmosphere. The removed CO2 could be either stored permanently to a reservoir (CCS, Carbon Capture and Storage) or utilized as a raw material in a long-lasting product (CCU, Carbon Capture and Utilization). The capture of CO2 could be done by direct air capture, or capturing CO2 from biogenic sources. Amine absorption is the state-of-the-art method to capture CO2, but it has some drawbacks: toxicity, high heat demand, and sorbent sensitivity towards impurities such as sulfur compounds and degradation in cyclic operation. Another potential solvent for CO2 could be water, which is easily available and safe to use in many applications. The problem with water is the poorer solubility of CO2, compared with amines, which leads to larger required flow rates. This study analyzed the technical feasibility of water absorption in a counterflow bubble column reactor. A dynamic, one-dimensional multiphase model was developed. The gas phase was modeled with plug flow assumption, and the liquid phase was treated as axially dispersed plug flow. CO2 capture efficiency, produced CO2 mass flow rate, and the product gas CO2 content were estimated as a function of inlet gas and liquid flow rate. In addition, the energy consumption per produced CO2-tonne was calculated. The CO2 capture efficiency was improved by increasing the liquid flow rate, while the CO2 content in product gas was decreased. For some of the studied liquid flow rates, an optimum gas flow rate was found to minimize the specific energy consumption. Further research is required to study the integration and dynamical operation of the system in a realistic operation environment.


1995 ◽  
Vol 9 (2) ◽  
pp. 380-384 ◽  
Author(s):  
James E Hanks

Adjuvants were evaluated to determine the effect on increasing spray droplet size and reducing the amount of spray dispensed in small driftable size particles when applying water and paraffinic oil at ultralow volume. Spray solutions were applied with an air-assist system at liquid flow rates of 28 and 56 ml/min and atomized with 14, 28, 42, 56, and 84 kPa of air pressure. Water and paraffinic oil were applied alone and with two drift retardant adjuvants mixed individually in each. The two water soluble adjuvants were mixed at concentrations of 0.25, 0.50, 0.75, 1.0, and 2.0%; oil soluble adjuvants were applied at 0.125, 0.25, and 0.50%. Adjuvants used in water and oil were effective at increasing droplet size and reducing the amount of liquid dispensed in small driftable size particles. Effectiveness of the adjuvants decreased as air pressures increased, with water soluble adjuvants being more susceptible to air pressure. Volume median diameters > 200 μm with water could be achieved without adjuvants; whereas with oil, an adjuvant was required.


SPE Journal ◽  
2006 ◽  
Vol 11 (02) ◽  
pp. 199-205 ◽  
Author(s):  
David I. Atkinson ◽  
Oyvind Reksten ◽  
Gerald Smith ◽  
Helge Moe

Summary Dedicated wet-gas flowmeters are now commercially available for the measurement of gas and liquid flow rates and offer a more compact measurement solution than does the traditional separator approach. The interpretation models of traditional multiphase flowmeters emphasize the liquid rate measurements and have been used to well test and meter mostly liquid-rich flow streams. These models were not developed for the measurement of gas flow rates, particularly those of wet gas. A new interpretation is described that allows a traditional multiphase flowmeter to operate in a dual mode either as a multiphase meter or as a wet-gas meter in 90 to 100% gas. The new interpretation model was developed for a commercially available multiphase flowmeter consisting of a venturi and a dual-energy composition meter. This combination results in excellent predictions of the gas flow rate; the liquid rate prediction is made with acceptable accuracy and no additional measurements. The wet gas and low-liquid-volume-fraction interpretation model is described together with the multiphase flowmeter. Examples of applying this model to data collected on flow loops are presented, with comparison to reference flow rates. The data from the Sintef and NEL flow loops show an error (including the reference meter error) in the gas flow rate, better than ± 2% reading (95% confidence interval), at line conditions; the absolute error (including the reference meter error) in the measured total liquid flow rate at line conditions was better than ± 2 m3/h (< ± 300 B/D: 95% confidence interval). This new interpretation model offers a significant advance in the metering of wet-gas multiphase flows and yields the possibility of high accuracies to meet the needs of gas-well testing and production allocation applications without the use of separators. Introduction There has been considerable focus in recent years on the development of new flow-measurement techniques for application to surface well testing and flow-measurement allocation in multiphase conditions without separating the phases. This has resulted in new technology from the industry for both gas and oil production. Today, there are wet-gas flowmeters, dedicated to the metering of wet-gas flows, and multiphase meters, for the metering of multiphase liquid flows. The common approach to wet-gas measurement relates gas and liquid flows to a "pseudo-gas flow rate" calculated from the standard single-phase equations. This addresses the need for gas measurement in the presence of liquids and can be applied to a limit of liquid flow [or gas volume fraction, (GVF)], though the accuracy of this approach decreases with decreasing GVF. The accurate determination of liquid rates by wet-gas meters is restricted in range. The application and performance of multiphase meters has been well documented through technical papers and industry forums, and after several years of development is maturing (Scheers 2004). Some multiphase measurement techniques can perform better, and the meters provide a more compact solution, than the traditional separation approach. It is not surprising that the use of multiphase flowmeters has grown significantly, the worldwide number doubling in little over a 2-year period (Mehdizadeh et al. 2002). Multiphase-flowmeter interpretation emphasizes the liquid rate measurement, and the application of multiphase flowmeters has been predominantly for liquid-rich flow stream allocation and well testing.


1986 ◽  
Vol 29 (4) ◽  
pp. 326-327
Author(s):  
I. A. Glagolev ◽  
A. A. Isaev ◽  
A. R. Mart'yanov ◽  
V. A. Maslov ◽  
G. M. Shmulevich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document