scholarly journals Experimental study of flow dynamics of a sweeping jet in a slot channel

2021 ◽  
Vol 2119 (1) ◽  
pp. 012034
Author(s):  
M V Shestakov

Abstract In recent years, fluidic oscillators have been actively applied as devices for flow control in the field of aero and hydrodynamics. This study aims to investigate the structure of a flow of sweeping jet ejected from a fluidic oscillator into a confined area – slot channel. Dynamics of sweeping jet flow are investigated using the PIV method with high temporal resolution. The effect of the Re number on the sweeping jet oscillation frequency was studied in the range from 1 500 to 8 000. Linear frequency dependence on Re number was obtained. Bounding walls affect the dynamics of sweeping jet flow that leads to a change of average velocity field. For low Re numbers, obtained results are in good agreement with the results of other studies.

1978 ◽  
Vol 35 (1) ◽  
pp. 823-827 ◽  
Author(s):  
O. N. Ovchinnikov ◽  
E. M. Smirnov

1995 ◽  
Vol 17 (2) ◽  
pp. 34-39
Author(s):  
Nguyen Van Que

A numerical solution has been presented for free convection flow of power law fluid in a vertical cylinder of finite height. The average velocity along the channel and the heat transfer have been calculated. Graphs of velocities and temperature are shown. The results show good agreement with analytic one in the asymptotic case.


Author(s):  
Sara Corvaro ◽  
Alessandro Mancinelli ◽  
Maurizio Brocchini

The analysis of the hydrodynamics over porous media is of interest for many coastal engineering applications as the wave propagation over permeable structures or gravel beaches. The study of a boundary layer evolving over permeable beds is important to a better understanding of the interactions between the flow over and inside the porous medium. An experimental study has been performed to analyze the dynamics produced when waves propagate over two kinds of permeable beds: spheres (regular permeability) and natural stones. For comparative purposes the same analysis has been extended to two rough beds made, respectively, by a single layer of spheres and natural stones. We here focus on the correlation between the wave energy reduction induced by a porous bed and the flow resistance. An experimental law for the prediction of the friction factor is found by using the log-fit method in analogy to that reported in Dixen et al. (2008) for rough beds. Moreover, inspection of the turbulent velocity components allows one to evaluate the bottom shear stress. The latter analysis has been performed for different permeable beds (regular and irregular beds). A good agreement between the bottom shear stress behavior and the wave height attenuation over rough and permeable beds (Corvaro et al. 2010 and Corvaro et al. 2014a) has been observed.


1998 ◽  
Vol 09 (02) ◽  
pp. 349-355 ◽  
Author(s):  
Deepak Dhar ◽  
Dietrich Stauffer

We re-examine the theory of transition from drift to no-drift in biased diffusion on percolation networks. We argue that for the bias field B equal to the critical value Bc, the average velocity at large times t decreases to zero as 1/ log (t). For B<Bc, the time required to reach the steady-state velocity diverges as exp ( const /|Bc-B|). We propose an extrapolation form that describes the behavior of average velocity as a function of time at intermediate time scales. This form is found to have a very good agreement with the results of extensive Monte Carlo simulations on a three-dimensional site-percolation network and moderate bias.


2011 ◽  
Vol 4 (11) ◽  
pp. 2543-2565 ◽  
Author(s):  
E. Bernard ◽  
C. Moulin ◽  
D. Ramon ◽  
D. Jolivet ◽  
J. Riedi ◽  
...  

Abstract. The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard Meteosat Second Generation (MSG) launched in 2003 by EUMETSAT is dedicated to the Nowcasting applications and Numerical Weather Prediction and to the provision of observations for climate monitoring and research. We use the data in visible and near infrared (NIR) channels to derive the aerosol optical thickness (AOT) over land. The algorithm is based on the assumption that the top of the atmosphere (TOA) reflectance increases with the aerosol load. This is a reasonable assumption except in case of absorbing aerosols above bright surfaces. We assume that the minimum in a 14-days time series of the TOA reflectance is, once corrected from gaseous scattering and absorption, representative of the surface reflectance. The AOT and the aerosol model (a set of 5 models is used), are retrieved by matching the simulated TOA reflectance with the TOA reflectances measured by SEVIRI in its visible and NIR spectral bands. The high temporal resolution of the data acquisition by SEVIRI allows to retrieve the AOT every 15 min with a spatial resolution of 3 km at sub-satellite point, over the entire SEVIRI disk covering Europe, Africa and part of South America. The resulting AOT, a level 2 product at the native temporal and spatial SEVIRI resolutions, is presented and evaluated in this paper. The AOT has been validated using ground based measurements from AErosol RObotic NETwork (AERONET), a sun-photometer network, focusing over Europe for 3 months in 2006. The SEVIRI estimates correlate well with the AERONET measurements, r = 0.64, with a slight overestimate, bias = −0.017. The sources of errors are mainly the cloud contamination and the bad estimation of the surface reflectance. The temporal evolutions exhibited by both datasets show very good agreement which allows to conclude that the AOT Level 2 product from SEVIRI can be used to quantify the aerosol content and to monitor its daily evolution with a high temporal frequency. The comparison with daily maps of Moderate Resolution Imaging Spectroradiometer (MODIS) AOT level 3 product shows qualitative good agreement in the retrieved geographic patterns of AOT. Given the high spatial and temporal resolutions obtained with this approach, our results have clear potential for applications ranging from air quality monitoring to climate studies. This paper presents a first evaluation and validation of the derived AOT over Europe in order to document the overall quality of a product that will be made publicly available to the users of the aforementioned research communities.


Author(s):  
Hiroaki Ohira ◽  
Kuniaki Ara

In order to study magnetohydrodynamic behavior in electromagnetic pumps, electromagnetic flow meters, etc. for Liquid Metal Fast Reactors (LMFRs), a large eddy simulation method using an artificial wall boundary condition was developed. In this study, Spalding’s law of the wall and the eddy viscosity for uniform magnetic fields, which was proposed by Shimomura, was applied to Finite Element Method of Generalized Simplified Marker and Cell (GSMAC-FEM). We calculated MHD channel flow in various element sizes on the conditions of Hartmann numbers of 0, 52.5 and 125, whose Reynolds numbers based on the average velocity were all about 29,000. These results showed the average velocity profiles were in good agreement with both the experimental results by Brouillette-Lykoudis and the detail calculation results by Shimomura, although farther calculations were needed to verify the turbulence intensities.


2015 ◽  
Vol 61 (230) ◽  
pp. 1194-1206 ◽  
Author(s):  
Martin G. Wearing ◽  
Richard C.A. Hindmarsh ◽  
M. Grae Worster

AbstractWe investigate the relationship between four ice-shelf characteristics in the area close to the calving front: ice flow speed, strain rate, ice thickness and shelf width. Data are compiled for these glaciological parameters at the calving fronts of 22 Antarctic ice shelves. Clarification concerning the viscous supply of ice to the calving front is sought following the empirical calving law of Alley and others (2008), derived from a similar but smaller dataset, and the scaling analysis of Hindmarsh (2012). The dataset is analysed and good agreement is observed between the expected theoretical scaling and geophysical data for the flow of ice near the calving front in the case of ice shelves that are laterally confined and have uniform rheology. The lateral confinement ensures flow is aligned in the along-shelf direction, and uniform rheological parameters mean resistance to flow is provided by near-stationary ice in the grounded margins. In other cases, the velocity is greater than predicted, which we attribute to marginal weakening or the presence of ice tongues.


1986 ◽  
Vol 108 (1) ◽  
pp. 204-208
Author(s):  
J. S. Chin ◽  
W. M. Li ◽  
M. H. Cao

The present paper is a step further and a modification of the semiempirical analysis of liquid fuel distribution downstream of a plain orifice injector proposed previously [1]. It has been improved from the previous paper in two aspects: (i) the use of experimental data of plain orifice atomization under crossflow obtained by the present authors instead of using Ingebo’s correlation [2], and (ii) consideration taken of the effect of a nonuniform crossflow. The agreement between the calculated results and the experimental data on fuel-air ratio distribution is quite good. In particular the model is capable of predicting the maximum value of the fuel-air ratio distribution and its position. The model has been used for the calculation of fuel-air ratio distribution under nonuniform crossflow with different average flow velocities. Thus the authors are able to predict how the position of maximum fuel-air ratio changes with average velocity for the same profile. The results are in good agreement with the experimental data. From the results of present research the authors conclude that for fuel-air ratio prediction in afterburners or ramjets, it is necessary to consider the effects of nonuniform crossflow. The present semiempirical analysis provides a good design tool for combustor development.


Sign in / Sign up

Export Citation Format

Share Document