scholarly journals Characterization of Irradiated Wood Plastic Composites (WPCs) Consumer Product

2021 ◽  
Vol 2129 (1) ◽  
pp. 012004
Author(s):  
Siti Nur Idayu Harun ◽  
Siti Amira Othman

Abstract This research paper emphasizes the characterization of irradiated wood plastic composites for consumer product. Throughout this research, it is precisely conducted to observe the mechanical and physical properties of WPCs and their ability to fit in the market globally. The study also carried out to promote WPCs product that came naturally from renewable sources. WPCs in this research can be defined as mixture of wood that can be replaced with pineapple fiber in a polymer matrix. Composite that used in this research mainly consists of 40% polyethylene (PE), 50 % pineapple fiber and the rest is coupling agent that enhance the WPCs mixture. After undergoes several processes such making the raw sample of WPCs mixture, the WPCs were then irradiated under required dose levels of 0.5, 1, 1.5, 2, 2.5 kGy with the aid of the Gamma Cell Irradiator. Soon after, the irradiated WPCs then undergoes characterization process using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDX). Diagnosis on the morphology of WPCs found that there was significant difference between the radiated and irradiated surfaces.

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2021 ◽  
Vol 9 (6) ◽  
pp. 63
Author(s):  
Payam Farzad ◽  
Ted Lundgren ◽  
Adel Al-Asfour ◽  
Lars Andersson ◽  
Christer Dahlin

This study was undertaken to investigate the integration of titanium micro-implants installed in conjunction with previously dentin-grafted areas and to study the morphological appearance, mineral content, and healing pattern of xenogenic EDTA-conditioned dentin blocks and granules grafted to cavities in the tibial bone of rabbits. Demineralized and non-demineralized dentin blocks and granules from human premolars were implanted into cavities prepared on the lateral aspects of the tibias of rabbits. After a healing period of six months, micro-implants were installed at each surgical site. Histological examinations were carried out after 24 weeks. Characterization of the EDTA-conditioned dentin blocks was performed by means of light microscopy, dental X-rays, scanning electron microscopy, and energy dispersive X-ray analysis (EDX). No implants were found to be integrated in direct contact with the dentin particles or blocks. On the EDTA-conditioned dentin surface, the organic marker elements C and N dominated, as revealed by EDX. The hydroxyapatite constituents Ca and P were almost absent on the dentin surface. No statistically significant difference was observed between the EDTA-conditioned and non-demineralized dentin, as revealed by BIC and BA. The bone-inductive capacity of the dentin material seemed limited, although demineralization by means of EDTA indicated higher BIC and BA values in conjunction with the installed implants in the area. A 12 h EDTA treatment did not fully decalcify the grafts, as revealed by X-ray analysis.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Liu Liu ◽  
Decai Gong ◽  
Zhengquan Yao ◽  
Liangjie Xu ◽  
Zhanyun Zhu ◽  
...  

Abstract Historically, sutras played an important role in spreading Buddhist faith and doctrine, and today these remain important records of Buddhist thought and culture. A Mahamayuri Vidyarajni Sutra with polychrome paintings was found inside the cavity on top of the Nanmen Buddhist pagoda, built in the early Tang dynasty (618–627 CE) and located in Anhui Province, China. Textile was found on the preface which is strongly degraded and fragile. Unfortunately, the whole sutra is under severe degradation and is incomplete. Technical analysis based on scientific methods will benefits the conservation of the sutra. Optical microscopy (OM), micro-Raman spectroscopy combined with optical microscope (Raman), scanning electron microscopy in combination with energy dispersive X-ray analysis (SEM–EDS) and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize the pigment and gilded material, as well as the paper fiber and textile. Pigments such as cinnabar, minium, paratacamite, azurite, lead white were found. Gilded material was identified as gold. A five-heddle warp satin, made of silk, was found as the textile on the preface of the sutra. The sutra’s preface and inner pages were made of paper comprised of bamboo and bark. As a magnificent yet recondite treasure of Buddhism, the sutra was analyzed for a better understanding of the material. A conservation project of the sutra will be scheduled accordingly.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2011 ◽  
Vol 415-417 ◽  
pp. 642-647
Author(s):  
En Zhong Li ◽  
Da Xiang Yang ◽  
Wei Ling Guo ◽  
Hai Dou Wang ◽  
Bin Shi Xu

Ultrafine fibers were electrospun from polyacrylonitrile (PAN)/N,N-dimethyl formamide (DMF) solution as a precursor of carbon nanofibers. The effects of solution concentration, applied voltage and flow rate on preparation and morphologies of electrospun PAN fibers were investigated. Morphologies of the green fibers, stabilized fibers and carbonized fibers were compared by scanning electron microscope (SEM). The diameter of PAN nanofibers is about 450nm and the distribution of diameter is well-proportioned. Characterization of the elements changes of fibers were performed by X-ray photoelectron spectroscopy (XPS).


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2012 ◽  
Vol 186 ◽  
pp. 212-215
Author(s):  
Jacek Krawczyk ◽  
Włodzimierz Bogdanowicz ◽  
Grzegorz Dercz ◽  
Wojciech Gurdziel

Microstructure of terminal area of Al65Cu32.9Co2.1ingots (numbers indicate at.%), obtained via directional solidification was studied. Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray powder diffraction were applied. Point microanalysis by Scanning Electron Microscope was used for examination of chemical compositions of alloy phases. It was found that tetragonal θ phase of Al2Cu stoichiometric formula was the dominate phase (matrix). Additionally the alloy contained orthogonal set of nanofibres of Al7Cu2Co T phase with the average diameter of 50-500 nm and oval areas of hexagonal Al3(Cu,Co)2H-phase, surrounded by monoclinic AlCu η1phase rim. Inside some areas of H-phase cores of decagonal quasicrystalline D phase were observed.


1989 ◽  
Vol 4 (6) ◽  
pp. 1320-1325 ◽  
Author(s):  
Q. X. Jia ◽  
W. A. Anderson

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.


Sign in / Sign up

Export Citation Format

Share Document