scholarly journals Problem statement for the analysis of electromechanical systems by simulation modeling methods

2021 ◽  
Vol 2131 (2) ◽  
pp. 022060
Author(s):  
K К Kim ◽  
S N Ivanov

Abstract The article presents an approach to the complex analysis of electromechanical systems using specialized packages of applied simulation programs. It is shown that the choice of research methodology is due to the complexity and mutual influence of energy processes in electromechanical converters and the absence of verified analytical solutions.The main research stages are defined, including the construction of a geometric model of the object, determination of the problem type to be solved and relevant initial and boundary conditions, justification of defining criteria, modeling of electromagnetic, thermal and hydraulic processes and their analysis. The software packages are based on the classical equations of electrodynamics, heat transfer, energy, motion and continuity. Creation of three-dimensional solid parametric model is implemented in the T-FlexCAD system. The simulation experiment was carried out with the use of SolidWorksFlowSimulation system, that allows to process the initial array of design parameters in conditions of the multiphysics problem statement. The variables were ranked using Statistica, a statistical processing and data analysis program. Simulation results of energy exchange processes at varying geometry of defining design parameters allow to establish dependence of electromechanical system output characteristics on design and dimension relations of system elements parameters and to design high-efficiency electromechanical systems on this basis.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shi Zhao ◽  
Tien-Fu Lu ◽  
Larissa Statsenko ◽  
Benjamin Koch ◽  
Chris Garcia

Purpose In the mining industry, a run-of-mine (ROM) stockpile is a temporary storage unit, but it is also widely accepted as an effective method to reduce the short-term variations of ore grade. However, tracing ore grade at ROM stockpiles accurately using most current fleet management systems is challenging, due to insufficient information available in real time. This study aims to build a three-dimensional (3D) model for ROM stockpiles continuously based on fine-grained grade information through integrating data from a number of ore grade tracking sources. Design/methodology/approach Following a literature review, a framework for a new stockpile management system is proposed. In this system, near real-time high-resolution 3D ROM stockpile models are created based on dump/load locations measured from global positioning system sensors. Each stockpile model contains a group of layers which are separated by different qualities. Findings Acquiring the geometric shapes of all the layers in a stockpile and cuts made by front wheel loaders provides a better understanding about the quality and quality distribution within a stockpile when it is stacked/reclaimed. Such a ROM stockpile model can provide information on predicating ore blend quality with high accuracy and high efficiency. Furthermore, a 3D stockyard model created based on such ROM stockpile models can help organisations optimise material flow and reduce the cost. Research limitations/implications The modelling algorithm is evaluated using a laboratory scaled stockpile at this stage. The authors expect to scan a real stockpile and create a reference model from it. Meanwhile, the geometric model cannot represent slump or collapse during reclaiming faithfully. Therefore, the model is expected to be reconcile monthly using laser scanning data. Practical implications The proposed model is currently translated to the operations at OZ Minerals. The use of such model will reduce the handling costs and improve the efficiency of existing grade management systems in the mining industry. Originality/value This study provides a solution to build a near real-time high-resolution multi-layered 3D stockpile model through using currently available information and resources. Such novel and low-cost stockpile model will improve the production rates with good output product quality control.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Lingfeng Tang ◽  
Mingwei Liu ◽  
Feihong Ma

In order to obtain the optimum structure of the lining pump under the condition of fluid thermosetting coupling, according to the given design parameters, the structural parameters of the pump were calculated, the three-dimensional geometric model was established, and the flow field analysis was carried out by CFD; the inlet angle βb1, outlet angle βb2, wrap angle φ, inlet diameter D1, and outlet diameter D2 of the impeller were selected as the five factors to design orthogonal experiment, and the results were analyzed by range analysis; then, the efficiency and cavitation allowance were obtained as combined parameters under the evaluation index. The displacement deformation and stress distribution under the condition of the coupling field were obtained by the fluid-solid coupling analysis, and the orthogonal experimental table of the impeller structure of the lining plastic pump was established, and then the orthogonal experimental results are analyzed to obtain the influence of each structural parameter under the condition of each evaluation index and the optimum combination parameters. The influence situation and the best combination parameters under the condition of evaluation index, taking the minimum displacement deformation and minimum stress of impeller as the reference index, and the optimum combination parameters under the condition of minimum displacement and stress were as follows: the inlet diameter D1 was 76 mm, the outlet diameter D2 was 252 mm, the inlet angle was 26°, the outlet angle was 24°, and the wrap angle was 115°. Finally, the 3D printing technology was used to print out the physical model to the hydraulic performance experiment verification.


Author(s):  
Yuri I. Biba ◽  
Zheji Liu ◽  
D. Lee Hill

A complete effort to redesign the aerodynamic characteristics of a single-stage pipeline compressor is presented. The components addressed are the impeller, diffuser region, and the volute. The innovation of this effort stems from the simultaneous inclusion of both the noise and aerodynamic performance as primary design parameters. The final detailed flange-to-flange analysis of the new components clearly shows that the operating range is extended and the tonal noise driven by the impeller is reduced. This is accomplished without sacrificing the existing high efficiency of the baseline machine. The body of the design effort uses both Computational Fluid Dynamics (CFD) and vibro-acoustics technology. The predictions are anchored by using the flange-to-flange analysis of the original design and its experimental performance data. By calculating delta corrections and assuming that these deltas are approximately the same for the new design, the expected performance is extrapolated.


2020 ◽  
Vol 9 (1) ◽  
pp. 105-110
Author(s):  
R. Shariatinasab ◽  
R. Azimi

In this paper, a methodology for determination of the optimal value of protection design parameters, i.e. tower footing resistance, insulation strength, and surge arresters’ rating in the planning stage of transmission lines (TLs) is presented. This method calculates the shielding failure flashover rate (SFFOR) of TLs, based on Electro-geometric model (EGM) of TLs, and the back flashover rate (BFR) of TLs, based on the Monte Carlo method, in which the accuracy of the proposed methodology has been verified by comparing the resultant results with those obtained with the use of the IEEE FLASH program. The proposed method can be directly used to achieve the minimum lightning flashover rate (LFOR) of TLs by the minimum investment cost. Also, it can be used, indirectly, for determination of the appropriate value of the footing resistance, insulation strength and arresters’ rating to satisfy any target number of LFOR that might be specified by the utilities or standards.


2021 ◽  
Vol 53 (3) ◽  
pp. 37-40
Author(s):  
Svitlana V. Bukina ◽  
Tatiana A. Sitnikova

In this paper, an attempt is made to develop a method for determining the critical cutting speed of the threads of the false edge of the edge-forming mechanism of the weaving rapier machine. The proposed calculation method takes into account the impact nature of the cutting process at a critical speed, which allows taking into account the mutual influence of the parameters of the working process and more fully assess the mechanics of this process, in which the intensity of the cutting force and the value of the contact stress take the maximum value. The paper calculates the critical cutting speed for some of the main types of threads used and the parameters of the knife blade. The presented calculation results can be used to select rational design parameters of the knife blade, depending on the type of processed threads, when designing and researching new edge-forming mechanisms on looms.


Author(s):  
Lena Johnson ◽  
Hugh A. Bruck ◽  
Satyandra K. Gupta

This paper describes the design, fabrication, testing and modeling of the SUR Hand. The SUR Hand is a soft, under actuated robotic hand. Through an iterative design and manufacturing process, SUR Hand’s soft, actuating components have been adapted from the original PneuFlex, pneumatically actuated finger to be highly flexible and capable of actuating a precision force. This paper shows how altering the design parameters of the fingers altered their overall performance. Furthermore, it details the experimental setup for testing the components, as well as the modeling methods used. Finally, it shows the process for creating and validating a geometric model that characterizes proper grasping strategies, assuming a passive palm component.


Author(s):  
Tatiana Vitkovskaya ◽  
◽  

The article discusses the policy of the municipalities' Heads in relation to entrepreneurs acquiring a political status and deputies with a business background. The Heads strive to maintain a high level of influence within the territory. Entrepreneurs see their entry into legislatures as an opportunity to acquire new social ties, including ones with officials, and as an opportunity to normatively regulate the context of business activities on the territory. Two scenarios of the relations between the Head and businessmen are identified: the cooperation and the conflict. Commonality or conflict of interests of the municipality and local business determine the choice of a strategy. The intensity of conflict or consensus is determined by the measure of support that the parties give each other. The article explores the interaction of Heads with small and medium businesses. The article is based on the results of the research conducted in four municipalities of the Sverdlovsk and Perm Regions. The main research method is interviews with Heads and other actors of local policies.


2019 ◽  
Vol 11 (10) ◽  
pp. 1024-1034
Author(s):  
Vinita Daiya ◽  
Jemimah Ebenezer ◽  
R. Jehadeesan

AbstractNow-a-days, far-field wireless power transfer/energy harvesting is underutilized due to the unavailability of proper methodology to design efficient system for maximum radio frequency (RF) power utilization. For efficient utilization of far-field RF energy an array/grid of rectenna, i.e. rectenna panel is required to generate the power from wireless signal. To minimize the engineering design phase period (design trials), this paper mathematically derives and summarizes the approach required for optimum rectenna panel design based on power available in the environment, RF transmit source capability, receiver power requirement and the design cost. For maximum power interception through a rectenna panel, its design parameters such as -panel size, number of rectenna, rectenna arrangement pattern, and rectenna spacing has been optimized in our work. Based on the optimization required, we have proposed the compact grid pattern with heterogeneous rectenna spacing. It has been proved theoretically in this paper that if a hexagonal shape panel is designed by placement of rectenna at vertices of equilateral triangle (with side length governed by antenna aperture) then, it is capable of intercepting maximum RF energy available at its location with the least number of rectenna.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments (CTs) have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors, these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules, it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5-stage transonic axial compressor. The examined recirculating tip blowing casing treatment (TBCT) consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment are influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position, or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin are evaluated. The study is carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) simulations.


Author(s):  
J. J. Waldren ◽  
C. J. Clark ◽  
S. D. Grimshaw ◽  
G. Pullan

Abstract Counter-rotating turbomachines have the potential to be high efficiency, high power density devices. Comparisons between conventional and counter-rotating turbomachines in the literature make multiple and often contradicting conclusions about their relative performance. By adopting appropriate non-dimensional parameters, based on relative blade speed, the design space of conventional machines can be extended to include those with counter-rotation. This allows engineers familiar with conventional turbomachinery to transfer their experience to counter-rotating machines. By matching appropriate non-dimensional parameters the loss mechanisms directly affected by counter-rotation can be determined. A series of computational studies are performed to investigate the relative performance of conventional and counter-rotating turbines with the same non-dimensional design parameters. Each study targets a specific loss source, highlighting which phenomena are directly due to counter-rotation and which are solely due to blade design. The studies range from two-dimensional blade sections to three-dimensional finite radius stages. It is shown that, at hub-to-tip ratios approaching unity, with matched non-dimensional design parameters, the stage efficiency and work output are identical for both types of machine. However, a counter-rotating turbine in the study is shown to have an efficiency advantage over a conventional machine of up to 0.35 percentage points for a hub-to-tip ratio of 0.65. This is due to differences in absolute velocity producing different spanwise blade designs.


Sign in / Sign up

Export Citation Format

Share Document