scholarly journals Flat UWB antenna with optimized ground plate

2021 ◽  
Vol 2140 (1) ◽  
pp. 012022
Author(s):  
A Khalil ◽  
D Sukhanov

Abstract The design of a broadband antenna based on a combination of electric and magnetic emitters is proposed. Antenna size ratios are proposed that provide a wide operating frequency band. The results of numerical modeling of the standing wave ratio and radiation patterns for a particular case with a matching range from 13 GHz to 27 GHz are presented.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Liang Ma ◽  
Rui Xu ◽  
Hongchen Wen ◽  
Zhenbing Li ◽  
Jian Li ◽  
...  

This paper proposes an ultra-broadband (2–13 GHz) and low-profile log-period monopole end-fire antenna for the flush-mounted applications. 24 monopoles with a log-period rule are used to cover the whole operating frequency band, and those monopoles are printed on both sides of a low-loss dielectric layer vertically placed over a slot feeding line with wideband microstrip-to-slotline transition. The low profile is realized by bending the parts of the long monopoles so that the overall antenna size is obtained as 40 mm × 100 mm × 13.6 mm. The proposed antenna is fabricated, and the measured results agree with the simulated results very well. The measured results indicate that the proposed antenna can work at the whole 2–13 GHz band with very good end-fire radiation patterns and stable gain performances.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pichet Moeikham ◽  
Chatree Mahatthanajatuphat ◽  
Prayoot Akkaraekthalin

The limitation of the electromagnetic interferences (EMIs) caused by UWB radiating sources into WLAN/WiMAX communication systems operating in the frequency band located around 5.5 GHz requires the adoption of appropriate design features. To this purpose, a notch filter integrated into an UWB antenna, which is able to ensure a better electrical insulation between the two mentioned communication systems with respect to that already presented by the authors Moeikham et al. (2011), is proposed in this paper. The proposed filter, consisting in a rectangular slot including a quarter-wavelength strip integrated on the lower inner edge of the UWB radiating patch, is capable of reducing the energy emission in the frequency range between 5.1 and 5.75 GHz resulting in lower EMIs with sensible electronic equipments working in this frequency band. The antenna structure has no need to be tuned after inserting the rectangle slot with a quarter-wavelength strip. The proposed antenna has potential to minimize the EMIs at a frequency range from 5.1 to 5.75 GHz. The radiation patterns are given nearly omnidirectional in plane and likely bidirectional in plane at all frequencies by the proposed antenna. Therefore, this antenna is suitable to apply for various UWB applications.


2012 ◽  
Vol 601 ◽  
pp. 163-167
Author(s):  
Hong Gang Hao ◽  
Wen Shuai Hu ◽  
Hai Yan Tian ◽  
Yi Ren

A compact dual-band antenna for ISM (2.45GHz) or WiMAX (3.15GHz) applications by low-temperature co-fired ceramic (LTCC) technology is presented in this paper. The proposed antenna is composed of multi-layer structures to reduce the sizes effectively. The simulated results show that the dimensions of the antenna are 11×4.2×1.2mm3, with the 2:1 VSWR impedance bandwidth definition, the lower and upper band have the bandwidth of 80 and 90 MHz. The novel antenna has realized miniaturization and omni-directional radiation patterns across the whole operating frequency band.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 804
Author(s):  
Gibeom Shin ◽  
Kyunghwan Kim ◽  
Kangseop Lee ◽  
Hyun-Hak Jeong ◽  
Ho-Jin Song

This paper presents a variable-gain amplifier (VGA) in the 68–78 GHz range. To reduce DC power consumption, the drain voltage was set to 0.5 V with competitive performance in the gain and the noise figure. High-Q shunt capacitors were employed at the gate terminal of the core transistors to move input matching points for easy matching with a compact transformer. The four stages amplifier fabricated in 40-nm bulk complementary metal oxide semiconductor (CMOS) showed a peak gain of 24.5 dB at 71.3 GHz and 3‑dB bandwidth of more than 10 GHz in 68–78 GHz range with approximately 4.8-mW power consumption per stage. Gate-bias control of the second stage in which feedback capacitances were neutralized with cross-coupled capacitors allowed us to vary the gain by around 21 dB in the operating frequency band. The noise figure was estimated to be better than 5.9 dB in the operating frequency band from the full electromagnetic (EM) simulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tamer Aboufoul ◽  
Akram Alomainy ◽  
Clive Parini

A compact reconfigurable and notched ultra-wideband (UWB) tapered slot antenna (TSA) is presented. The antenna reconfiguration operation principle relies on 2 mechanisms: in the first mechanism a resonator parasitic microstrip line electrically coupled to the TSA is used to notch the TSA at a specific frequency and the second mechanism relies on changing the input impedance matching of the antenna by means of changing the length of a stub line extended from an additional tiny partial ground on the back side of the antenna. The reflection coefficient, radiation patterns, and gain simulations and measurements for the proposed antenna are presented to verify the design concepts featuring a very satisfactory performance. Total efficiency simulations and measurements are also presented to highlight the filtering performance of the reconfigured antenna. When the antenna was reconfigured from the UWB to work into multiple frequency bands, the radiation patterns were still the same and the total peak gain has slightly improved compared to the UWB case. In addition, when the antenna operated in the notched mode, the gain has significantly dropped at the notch frequency. The simplicity and flexibility of the proposed multimode antenna make it a good candidate for future cognitive radio front ends.


This article deals with the various designs of a novel compact microstrip fed UWB antenna to investigate the corresponding return losses of different structures. The dimension of the designed antenna is 33 x 19 x 1.9 mm3 with FR4 substrate and it can be operated from 2.846 - 11.7458 GHz. The effects of varying the structure of antenna are to exhibit the investigation of corresponding return losses. Different structures of antenna are simulated in Ansoft HFSS simulator. The results of return losses and radiation patterns are explored with the ultra wide band (UWB) rectangular Stair slot antenna. The modified structure of antenna shows the minimized return loss with an enhanced bandwidth that satisfies good UWB characteristics. Antenna performance can also be explored from the radiation behavior of the antenna which is relatively omni-directional pattern for rectangular Stair slot antenna


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaoyin Li ◽  
Lianshan Yan ◽  
Wei Pan ◽  
Bin Luo

A novel compact coplanar waveguide- (CPW-) fed ultrawideband (UWB) printed planar volcano-smoke antenna (PVSA) with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.


Sign in / Sign up

Export Citation Format

Share Document