scholarly journals Comparative Analysis of Lithium Iron Phosphate Battery and Ternary Lithium Battery

2022 ◽  
Vol 2152 (1) ◽  
pp. 012056
Author(s):  
Yuhao Su

Abstract This article analyses the lithium iron phosphate battery and the ternary lithium battery. With the development of new energy vehicles, people are discussing more and more about the batteries of electric vehicles. Nowadays, electric vehicles mainly use the lithium iron phosphate battery and the ternary lithium battery as energy sources. Existing research and articles have given the current performance of the two batteries but have not systematically compared the two batteries with more details. This article introduces the basic principles, cathode structure, and standard preparation methods of the two batteries by summarizing and discussing existing data and research. The article discusses the two types of batteries and concludes the advantages and disadvantages of the two batteries at the present stage. This article aims to help readers have a more comprehensive understanding of the basic information of the two batteries at this stage and provide theoretical guidance for future research on batteries for electric vehicles.

2015 ◽  
Vol 1115 ◽  
pp. 531-534
Author(s):  
Siti Fauziah Toha

It is well known that the main constraint of electric vehicles (EVs) is the capabilities to supply efficient energy for driving-range that is comparable to petrol fueled vehicles. Moreover, a large number of batteries needed for EV contribute to heavy weight, poor durability and pricy total cost. In view of that, the need to prolong the battery lifetime, and use its full capacity, is of utmost importance. Therefore, an accurate battery model is a challenging first step to the overall problem soving chain. This paper presents a transfer function model prediction with nature-inspired approach for a Lithium iron phosphate battery. An Ant Colony Optimisation technique is used in search for accurate model with robust capability to adapt with different input current based on the New European Driving Cycle (NEDC) range. The model is further validated with autocorrelation and cross-correlation test and it is proven to give an error tolerance between the 95% confidence limit.


2018 ◽  
Vol 25 (6) ◽  
pp. 1059-1073 ◽  
Author(s):  
Weifeng Chen ◽  
Hu Weimin ◽  
Dejiang Li ◽  
Shaona Chen ◽  
Zhongxu Dai

AbstractGraphene (graphene) is a new type of two-dimensional inorganic nanomaterial developed in recent years. It can be used as an ideal inorganic nanofiller for the preparation of polymer nanocomposites because of its high mechanical strength, excellent electrical conductivity and plentiful availability (from graphite). In this review, the preparation methods of graphene/polymer nanocomposites, including solution blending, melt blending and in situ polymerization, are introduced in order to study the relationship between these methods and the final characteristics and properties. Each method has an influence on the final characteristics and properties of the nanocomposites. The advantages and disadvantages of these methods are discussed. In addition, a variety of nanocomposites with different properties, such as mechanical properties, electronic conductivity, thermal conductivity and thermal properties, are summarized comprehensively. The potential applications of these nanocomposites in conductive materials, electromagnetic shielding materials, photocatalytic materials and so on, are briefly presented. This review demonstrates that polymer/graphene nanocomposites exhibit superior comprehensive performance and will be applied in the fields of new materials and novel devices. Future research directions of the nanocomposites are also presented.


2014 ◽  
Vol 494-495 ◽  
pp. 238-241
Author(s):  
Zhe Ci Tang ◽  
Chun Lin Guo

Electric vehicle power battery is one of the key technologies for electric vehicle charging and discharging. This paper summarized the characteristics of lithium iron phosphate battery firstly, then adopted intermittent discharge method to get the battery OCV-SOC curve under experimental tests, determined the parameters of OCV-SOC models, analyzed the advantages and disadvantages of commonly used cell performance model, finally built electric vehicle battery charging model.


2015 ◽  
Vol 827 ◽  
pp. 156-161
Author(s):  
Rani Cahyani Fajaryatun ◽  
Therecia Wulan Sukardi ◽  
Arif Jumari ◽  
Agus Purwanto

A lithium battery was composed of anode, cathode, and separator. The performance of lithium battery was influenced by the thickness of film, the composition of material, and the effect of surfactant and binder. This research investigated the effect of the anode film thickness to the electrochemical performances of lithium battery. Mesocarbon microbeads (MCMB) and lithium iron phosphate (LiFePO4) were used respectively as anode and cathode. Mesocarbon microbeads, carbon black (conductive agent), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed well to produce slurry. The slurry were then coated, dried and pressed. The anode had various thickness of 50 μm, 70 μm, 100 μm, and 150 μm. The cathode film was made with certain thickness. The performance of lithium battery was examined by Eight Channel Battery Analyzer, the composition of the anode sample was examined by XRD (X-Ray Diffraction), and the crystal structure of the anode sample was analyzed by SEM (Scanning Electron Microscope). The research showed that the thickness of anode film of 100 μm gave the best performance. The battery performance decreased if the thickness was more than 100 μm. The best performance of battery voltage were between 3649 mV and 3650 mV.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7234-7259
Author(s):  
Yongjian Xu ◽  
Yan Liu ◽  
Shenglin Chen ◽  
Yonghao Ni

Lignin, as a potential precursor of carbon fiber, has the characteristics of abundant reserves, renewable and high carbon content, and its application in the preparation of carbon fibers has substantial cost advantages if some important processing and quality hurdles can be overcome. This paper reviews the preparation process of lignin-based carbon fibers, and moreover, describes the characteristics of carbon fiber prepared by different precursors compared with the presently used precursors. Three preparation methods for lignin-based carbon fibers are introduced: melt spinning, solution spinning, and electrospinning. The applicability, advantages, and disadvantages of the three preparation methods are analyzed from the aspects of process conditions and performance characteristics. Possible directions for future research are considered, with the goal of providing a reference for further study of lignin-based carbon fibers.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1932
Author(s):  
Zongwei Liu ◽  
Xinglong Liu ◽  
Han Hao ◽  
Fuquan Zhao ◽  
Amer Ahmad Amer ◽  
...  

With the rapid development of new energy vehicles (NEVs) industry in China, the reusing of retired power batteries is becoming increasingly urgent. In this paper, the critical issues for power batteries reusing in China are systematically studied. First, the strategic value of power batteries reusing, and the main modes of battery reusing are analyzed. Second, the economic benefit models of power batteries echelon utilization and recycling are constructed. Finally, the economic benefits of lithium iron phosphate (LIP) battery and ternary lithium (TL) battery under different reusing modes are analyzed based on the economic benefit models. The results show that when the industrial chain is fully coordinated, LIP battery echelon utilization is profitable based on a reasonable scenario scheme. However, the multi-level echelon utilization is only practical under an ideal scenario, and more attention should be paid to the first level echelon utilization. Besides, the performance matching of different types of batteries has a great impact on the echelon utilization income. Thus, considering the huge potentials of China’s energy storage market, the design of automobile power batteries in the future should give due consideration to the performance requirements of energy storage batteries. Moreover, the TL battery could only be recycled directly, while the LIP has the feasibility of echelon utilization at present. At the same time, it will strengthen the cost advantage of the LIP battery, which deserves special attention.


Author(s):  
Kai Wu ◽  

Major countries and automobile manufacturers in the world jointly promote the transformation of automobile energy and boost the development of electric vehicles. As the most widely used power battery, the lithium-ion power battery comes under the spotlight. The progress of lithium iron phosphate batteries and ternary lithium batteries has given rise to the hope of transformation. And the breakthrough of solidstate batteries has laid a solid foundation for future highperformance batteries. This paper reviews and analyzes the strengths and weaknesses of three power batteries, and evaluates their modifications, application, and current situation. It can be concluded that ternary lithium batteries cannot replace lithium iron phosphate batteries and solid-state batteries temporarily cannot be widely produced and applied.


Sign in / Sign up

Export Citation Format

Share Document