scholarly journals Development of an integrated cooling system for motorcycle helmet by physical study of temperature variations and heat transfer

2022 ◽  
Vol 2153 (1) ◽  
pp. 012010
Author(s):  
S F Zambrano-Becerra ◽  
P M Galvis-Sanchez ◽  
N Y Perez-Rangel ◽  
E Florez-Solano ◽  
E Espinel-Blanco

Abstract In Colombia, the most widely used means of transport today are motorcycles, which have become increasingly numerous, bearing in mind that they are subject to laws and regulations imposed by the country’s mobility, transit and transport agencies, the use of helmets is mandatory for drivers and passengers, safety measures are monitored, the hull must be certified and meet the required technical standards; whereas its role is to protect people in the event of accidents, regulations require that the helmet be completely closed to protect the entire head and chin; the design of the helmet allows air entry and there is no concentration of temperature inside, all this is done by implementing air inlet and outlet ducts, which circulate air when the motorcycle is in motion, unfortunately this does not happen due to the accumulation of temperature in the back of the helmet that makes the user feel tired and uncomfortable. This research proposes the development of a prototype portable cooling system for motorcycle helmets by the physical principle of heat transfer, by using Peltier cells, to have low production cost, optimal operation, and low energy consumption thanks to natural air flow.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2689
Author(s):  
Alfredo Iranzo ◽  
Francisco Pino ◽  
José Guerra ◽  
Francisco Bernal ◽  
Nicasio García

A cooling system design for the processing of radioactive waste drums is investigated in this work, with the objective of providing insights for the determination of the air flow rate required to ensure an acceptable slag temperature (323 K or below) after 5 days. A methodology based on both 3D and 2D axisymmetric Computational Fluid Dynamics (CFD) modelling is developed. Transient temperature distributions within the drums in time and space determined by the heat transfer characteristics are studied in detail. A sensitivity analysis is also carried out assuming different physical properties of the radioactive slag. It was found out that for all variations analyzed, the maximum temperature of slag at the end of five days cooling is below 323 K, where the maximum outlet air temperature for a minimum air inlet velocity of 1 m/s is between 320 K and 323 K depending on the radioactive slag properties. When glass-like radioactive slag properties are assumed, the internal heat conduction within the slag is limiting the overall heat transfer, therefore requiring significantly longer cooling times.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Kashuai Du ◽  
Po Hu ◽  
Zhen Hu

Passive containment cooling system (PCCS) is an important passive safety facility in the large advanced pressurized water reactor. Using the physical laws, such as gravity and buoyancy, the water film/air countercurrent flow is formed in the external annular channel to keep inside temperature and pressure below the maximum design values. Due to the large curvature radius of the annular channel, one of the short arc segments is taken out, as a rectangular channel, to analyze the main water film evaporation heat transfer characteristics. Two numerical methods are used to predict the water film evaporative mass flow rate during the heat transfer process in the large-scale rectangular channel with asymmetric heating when the water film temperature is not saturated. At the same time, these numerical simulation results are validated by the experiment which is set up to study water film/air countercurrent flow heat transfer on a vertical back heating plate with 5 m in length and 1.2 m in width. It is shown that the maximum deviation between numerical simulation and experiment is 30%. In addition, the influences on these parameters, such as heat flux, evaporative mass flow rate, and water film thickness, are evaluated under the different tilted angles of the rectangular channel and horizontal plane, water/air inlet flow rates, water/air inlet temperatures, heating surface temperatures, and air inlet relative humidities. All these results can provide a good guidance for the design of PCCS in the future.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 968-980
Author(s):  
Xueping Du ◽  
Zhijie Chen ◽  
Qi Meng ◽  
Yang Song

Abstract A high accuracy of experimental correlations on the heat transfer and flow friction is always expected to calculate the unknown cases according to the limited experimental data from a heat exchanger experiment. However, certain errors will occur during the data processing by the traditional methods to obtain the experimental correlations for the heat transfer and friction. A dimensionless experimental correlation equation including angles is proposed to make the correlation have a wide range of applicability. Then, the artificial neural networks (ANNs) are used to predict the heat transfer and flow friction performances of a finned oval-tube heat exchanger under four different air inlet angles with limited experimental data. The comparison results of ANN prediction with experimental correlations show that the errors from the ANN prediction are smaller than those from the classical correlations. The data of the four air inlet angles fitted separately have higher precisions than those fitted together. It is demonstrated that the ANN approach is more useful than experimental correlations to predict the heat transfer and flow resistance characteristics for unknown cases of heat exchangers. The results can provide theoretical support for the application of the ANN used in the finned oval-tube heat exchanger performance prediction.


Author(s):  
He Zhang ◽  
Fenglei Niu ◽  
Yu Yu ◽  
Peipei Chen

Thermal mixing and stratification often appears in passive containment cooling system (PCCS), which is an important part of passive safety system. So, it is important to accurately predict the temperature and density distributions both for design optimization and accident analysis. However, current major reactor system analysis codes only provide lumped parameter models which can only get very approximate results. The traditional 2-D or 3-D CFD methods require very long simulation time, and it’s not easy to get result. This paper adopts a new simulation code, which can be used to calculate heat transfer problems in large enclosures. The new code simulates the ambient fluid and jets with different models. For the ambient fluid, it uses a one-dimensional model, which is based on the thermal stratification and derived from three conservation equations. While for different jets, the new code contains several jet models to fully simulate the different break types in containment. Now, the new code can only simulate rectangular enclosures, not the cylinder enclosure. So it is meaningful for us to modify the code to simulate the actual containment, then it can be applied to solve the heat transfer problem in PCCS accurately.


Author(s):  
D. Jackson ◽  
P. Ireland ◽  
B. Cheong

Progress in the computing power available for CFD predictions now means that full geometry, 3 dimensional predictions are now routinely used in internal cooling system design. This paper reports recent work at Rolls-Royce which has compared the flow and htc predictions in a modern HP turbine cooling system to experiments. The triple pass cooling system includes film cooling vents and inclined ribs. The high resolution heat transfer experiments show that different cooling performance features are predicted with different levels of fidelity by the CFD. The research also revealed the sensitivity of the prediction to accurate modelling of the film cooling hole discharge coefficients and a detailed comparison of the authors’ computer predictions to data available in the literature is reported. Mixed bulk temperature is frequently used in the determination of heat transfer coefficient from experimental data. The current CFD data is used to compare the mixed bulk temperature to the duct centreline temperature. The latter is measured experimentally and the effect of the difference between mixed bulk and centreline temperature is considered in detail.


Sign in / Sign up

Export Citation Format

Share Document