scholarly journals Research on Residual Stress Distribution in Different Areas of Laser-MAG Arc Hybrid Welding by Numerical Simulation

2022 ◽  
Vol 2160 (1) ◽  
pp. 012026
Author(s):  
Xiaoyan Qian ◽  
Xin Ye ◽  
Xiaoqi Hou ◽  
Haohao Jing ◽  
Peilei Zhang ◽  
...  

Abstract In this research, through experiments and numerical simulations, the residual stress distribution of the top and bottom surfaces of the laser (TruDisk16002)-arc (MAG) hybrid welding seam and the weld cross-section are studied. The results show that when the arc power is 6.5KW and the laser power is 7.5KW, the weld is formed well. The residual stress on the bottom surface near the weld is higher than that on the top surface. The laser zone in the center of the weld has the largest residual stress, the arc zone is smaller, and the mixed zone is the smallest. The laser zone has the largest residual stress at the fusion line and the heat-affected zone, followed by the mixed zone, and the arc zone is the smallest. followed by the mixed zone, and the arc zone has the smallest.

Author(s):  
Yong Du ◽  
Yu'e Ma ◽  
Lei Gou ◽  
Chao Guo ◽  
Bo Li ◽  
...  

In order to study the residual stress profile of 7050-T7451 aluminum sheet with groove after laser shock peening (LSP), the residual stress distribution was measured. It is shown that the residual stress decreases gradually from the center to the edge of groove; and then there is the minimum value at the edge of the groove bottom surface. By using ABAQUS software to establish three-dimensional finite element model for 7050 aluminum sheet with groove, and the load was applied by VDLOAD subroutine. The finite element analysis was performed and the analysis results were compared with the experimental measurements, in which the both the results agree with each other very well. And then the residual stress distribution of the sheet was analyzed after laser shock peening under different laser processing parameters. It is shown that the residual stress decreases firstly and then increases with the rise of laser power density from 0.84 GW/cm2 to 5.29 GW/cm2. And the residual stress obtains the minimum value -230 MPa at the laser power density of 3.06 GW/cm2. With the increasing of spot diameter from 4 mm to 6 mm, the residual stress increased from -214 MPa to -30 MPa. With the increasing of laser pulse width from 10 ns to 40 ns, the residual stress decreased from -21 MPa to -288 MPa; and the depth of the compressive residual stress increased too. For all simulations under different LSP parameters, the minimum surface residual stress achieved at the bottom surface of the groove as well.


Author(s):  
FA de Castro ◽  
Paulo P Kenedi ◽  
LL Vignoli ◽  
I I T Riagusoff

Metallic hyperstatic structures, like beams, submitted to excessive loads, do not fail completely before fully yielding in more than one cross section. Indeed, for built-in beams, three cross sections must be fully yielded before the final failure can occur. So, modeling the evolution of the cross-section residual stress distribution is an important subject that should be addressed to guarantee the stress analysis modeling correctness. This paper analyses the residual stress distribution evolution, in critical cross sections, of built-in beams during a transversal concentrated load growth, until the final failure through hinges formation. A finite element model is also presented. The results show good matches with the numerical model, used as a reference.


2013 ◽  
Vol 546 ◽  
pp. 127-131
Author(s):  
Zhi Qing Guo ◽  
Qiu Juan Lv ◽  
Yan Jiao Li ◽  
Chang Jiang Liu ◽  
Fang Xie

This paper use the software ANSYS to study the aluminum alloy (LF6) welding residual stress by numerical simulation and experimental study. The result indicates that the aluminum alloy (LF6) has the same residual stress distribution with others, there is a maximum value existing at the range of 4-5mm near the welding seam.


2014 ◽  
Vol 783-786 ◽  
pp. 2316-2321
Author(s):  
Hiroshi Kawakami ◽  
Akiyoshi Kondo ◽  
Muneharu Kutsuna ◽  
Kiyotaka Saito ◽  
Hiroki Inoue ◽  
...  

Indirect laser peening applied to the substrate of austenitic stainless steel with the sheet of similar material. Effects of indirect laser peening condition on the formation of the dimple and the residual stress were investigated in this paper. Shape of the dimple and distribution of the residual stress were measured by laser microscope and X-ray diffraction, respectively. It was observed by the microscope that clean substrate surface of as-received state kept after indirect laser peening because of protection by the sheet. However, fracture of sheet occurred slightly in high pulse energy condition. The diameter and the depth of the dimple by indirect laser peening increased with the increase of laser power. Efficiency of dimple formation decreased with the increase of pulse energy. Affective condition region of indirect laser peening with a combination between the substrate and the sheet of austenitic stainless steel may be limited below the laser power density of 10GW/cm2. It was confirmed that indirect laser peening induced compressive residual stress in the substrate. One of peak of compressive residual stress in residual stress distribution existed near the bottom of the dimple. Residual stress distribution which was produced by indirect laser peening may affect change of quasi bending modulus which was obtained by three-point bending test.


2019 ◽  
Vol 224 ◽  
pp. 05006
Author(s):  
Tong Ye ◽  
Xiaohui Jiang ◽  
Miaoxian Guo ◽  
Vladimir Kuptsov ◽  
Sergey Fedorov

In this paper, the selective laser melting (SLM) simulation analysis of components is carried out. The residual stress distribution of the formed part was predicted, and the influence of process parameters such as exposure time, laser power and laser scanning speed on the residual stress of the SLM formed part was analyzed. It was found that the residual stress concentration of the formed part was in the middle of the upper surface or the bottom surface. In addition, the laser power and the laser scanning speed have a great influence on the residual stress of the formed part. The results of this study lay a theoretical and experimental basis for the optimization of residual stress and quality control of SLM components.


2011 ◽  
Vol 681 ◽  
pp. 177-181 ◽  
Author(s):  
Valentin Richter-Trummer ◽  
Pedro Miguel Guimarães Pires Moreira ◽  
João Ribeiro ◽  
Paulo Manuel Salgado Tavares de Castro

Residual stresses parallel to the welding direction on a cross-section of a 3 mm thick friction stir butt-welded aluminum alloy AA6082-T6 plate were determined using the contour method. A full contour map of longitudinal residual stresses on a weld cross section was determined in this way, revealing detailed information on the residual stress distribution in the inside of a friction stir weld, especially in the nugget zone. The typical M-shape, usually described for the residual stress distribution in friction stir welds, was found. The maximum residual stresses are below the yield strength of the material in the shoulder region and, outside of the welding region, low tensile and compressive residual stresses are responsible for the necessary stress equilibrium on the plane of interest. A comparison was made with the established incremental hole drilling technique on an equivalent plate for validation and good agreement of both techniques was obtained. The distribution, as well as the magnitude of the residual stresses measured by both techniques, is very similar, thus validating both the experimental and numerical procedures used for the contour method application, presented and discussed in the present paper.


Author(s):  
Satoshi YAMADA ◽  
Kazuhiro FUJISAKI ◽  
Masahiro TODOH ◽  
Shigeru TADANO

Author(s):  
Mu Qin ◽  
Guangxu Cheng ◽  
Zaoxiao Zhang ◽  
Qing Li ◽  
Jianxiao Zhang

The 2.25Cr-1Mo-0.25V steels are widely used in the petroleum chemical industry for the manufacturing of pressure vessels. The multi-pass welding is a critical type of fabrication in hydrogenation reactor. However, very complicated residual stresses could be generated during the multi-pass welding process. The presence of residual stresses could have significant influence on the performance of welded product. In the present work, the transient temperature distribution and residual stress distribution in welding of 2.25Cr-1Mo-0.25V steel are analyzed by using numerical method. An uncoupled thermal-mechanical two-dimensional (2-D) FEM is proposed under the ABAQUS environment. The transient temperature distribution and the residual stress distribution during the welding processes are determined through the finite element method. A group of experiments by using the blind-hole method have been conducted to validate the numerical results. The results of 2-D model agree well with the experiment. The result shows that the maximum welding stress generated at heat affected zone (HAZ) both at the top and bottom surface whether to transverse stress or longitudinal stress.


Sign in / Sign up

Export Citation Format

Share Document