scholarly journals Depression and Suicide Analysis Using Machine Learning and NLP

2022 ◽  
Vol 2161 (1) ◽  
pp. 012034
Author(s):  
Pratyaksh Jain ◽  
Karthik Ram Srinivas ◽  
Abhishek Vichare

Abstract Depression is a common type of mental illness that can impair performance and lead to suicide ideation or attempts. Traditional techniques used by mental health experts can assist in determining an individual’s type of depression. Machine learning and NLP were used to understand how to predict posts that indicate depression in people and their accuracy. For this work, we have used a dataset from reddit. Reddit is an ideal destination to use as a supplement to the traditional public health system because of its punctuality in exchanging ideas, versatility in presenting emotions, as well as compatibility to use medical terms. We examined the comments and posts about suicidal ideation. We used NLP to gain a better understanding of interdisciplinary fields which are related to suicide. We discovered two help groups for depression and suicidal thoughts: r/depression and r/SuicideWatch. The famous “SuicideWatch” subreddit is commonly used by people who have thoughts of suicide and gives significant signals for suicidal behavior. A brief scan through the articles discloses that the subreddits are legitimate online spots to seek assistance and provide honest text data about people’s mental state. We have used multiple ML algorithms such as Naïve Bayes, SVM. To address the research problem, we have considered two subreddits that provided us with appropriate information to track people at risk. We achieved results of 77.29 % accuracy and 0.77 f1-score of Logistic Regression, 74.35 % accuracy and 0.74 f1-score of Naïve Bayes, 77.120% accuracy and 0.77 f1-score of Support Vector Machine, 77.298% accuracy, and 0.77 f1-score of Random Forest.

Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2019 ◽  
Vol 8 (4) ◽  
pp. 2187-2191

Music in an essential part of life and the emotion carried by it is key to its perception and usage. Music Emotion Recognition (MER) is the task of identifying the emotion in musical tracks and classifying them accordingly. The objective of this research paper is to check the effectiveness of popular machine learning classifiers like XGboost, Random Forest, Decision Trees, Support Vector Machine (SVM), K-Nearest-Neighbour (KNN) and Gaussian Naive Bayes on the task of MER. Using the MIREX-like dataset [17] to test these classifiers, the effects of oversampling algorithms like Synthetic Minority Oversampling Technique (SMOTE) [22] and Random Oversampling (ROS) were also verified. In all, the Gaussian Naive Bayes classifier gave the maximum accuracy of 40.33%. The other classifiers gave accuracies in between 20.44% and 38.67%. Thus, a limit on the classification accuracy has been reached using these classifiers and also using traditional musical or statistical metrics derived from the music as input features. In view of this, deep learning-based approaches using Convolutional Neural Networks (CNNs) [13] and spectrograms of the music clips for MER is a promising alternative.


Author(s):  
Muskan Patidar

Abstract: Social networking platforms have given us incalculable opportunities than ever before, and its benefits are undeniable. Despite benefits, people may be humiliated, insulted, bullied, and harassed by anonymous users, strangers, or peers. Cyberbullying refers to the use of technology to humiliate and slander other people. It takes form of hate messages sent through social media and emails. With the exponential increase of social media users, cyberbullying has been emerged as a form of bullying through electronic messages. We have tried to propose a possible solution for the above problem, our project aims to detect cyberbullying in tweets using ML Classification algorithms like Naïve Bayes, KNN, Decision Tree, Random Forest, Support Vector etc. and also we will apply the NLTK (Natural language toolkit) which consist of bigram, trigram, n-gram and unigram on Naïve Bayes to check its accuracy. Finally, we will compare the results of proposed and baseline features with other machine learning algorithms. Findings of the comparison indicate the significance of the proposed features in cyberbullying detection. Keywords: Cyber bullying, Machine Learning Algorithms, Twitter, Natural Language Toolkit


Author(s):  
Anirudh Reddy Cingireddy ◽  
Robin Ghosh ◽  
Supratik Kar ◽  
Venkata Melapu ◽  
Sravanthi Joginipeli ◽  
...  

Frequent testing of the entire population would help to identify individuals with active COVID-19 and allow us to identify concealed carriers. Molecular tests, antigen tests, and antibody tests are being widely used to confirm COVID-19 in the population. Molecular tests such as the real-time reverse transcription-polymerase chain reaction (rRT-PCR) test will take a minimum of 3 hours to a maximum of 4 days for the results. The authors suggest using machine learning and data mining tools to filter large populations at a preliminary level to overcome this issue. The ML tools could reduce the testing population size by 20 to 30%. In this study, they have used a subset of features from full blood profile which are drawn from patients at Israelita Albert Einstein hospital located in Brazil. They used classification models, namely KNN, logistic regression, XGBooting, naive Bayes, decision tree, random forest, support vector machine, and multilayer perceptron with k-fold cross-validation, to validate the models. Naïve bayes, KNN, and random forest stand out as the most predictive ones with 88% accuracy each.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Patricio Wolff ◽  
Manuel Graña ◽  
Sebastián A. Ríos ◽  
Maria Begoña Yarza

Background. Hospital readmission prediction in pediatric hospitals has received little attention. Studies have focused on the readmission frequency analysis stratified by disease and demographic/geographic characteristics but there are no predictive modeling approaches, which may be useful to identify preventable readmissions that constitute a major portion of the cost attributed to readmissions.Objective. To assess the all-cause readmission predictive performance achieved by machine learning techniques in the emergency department of a pediatric hospital in Santiago, Chile.Materials. An all-cause admissions dataset has been collected along six consecutive years in a pediatric hospital in Santiago, Chile. The variables collected are the same used for the determination of the child’s treatment administrative cost.Methods. Retrospective predictive analysis of 30-day readmission was formulated as a binary classification problem. We report classification results achieved with various model building approaches after data curation and preprocessing for correction of class imbalance. We compute repeated cross-validation (RCV) with decreasing number of folders to assess performance and sensitivity to effect of imbalance in the test set and training set size.Results. Increase in recall due to SMOTE class imbalance correction is large and statistically significant. The Naive Bayes (NB) approach achieves the best AUC (0.65); however the shallow multilayer perceptron has the best PPV and f-score (5.6 and 10.2, resp.). The NB and support vector machines (SVM) give comparable results if we consider AUC, PPV, and f-score ranking for all RCV experiments. High recall of deep multilayer perceptron is due to high false positive ratio. There is no detectable effect of the number of folds in the RCV on the predictive performance of the algorithms.Conclusions. We recommend the use of Naive Bayes (NB) with Gaussian distribution model as the most robust modeling approach for pediatric readmission prediction, achieving the best results across all training dataset sizes. The results show that the approach could be applied to detect preventable readmissions.


2020 ◽  
Vol 19 ◽  
pp. 153303382090982
Author(s):  
Melek Akcay ◽  
Durmus Etiz ◽  
Ozer Celik ◽  
Alaattin Ozen

Background and Aim: Although the prognosis of nasopharyngeal cancer largely depends on a classification based on the tumor-lymph node metastasis staging system, patients at the same stage may have different clinical outcomes. This study aimed to evaluate the survival prognosis of nasopharyngeal cancer using machine learning. Settings and Design: Original, retrospective. Materials and Methods: A total of 72 patients with a diagnosis of nasopharyngeal cancer who received radiotherapy ± chemotherapy were included in the study. The contribution of patient, tumor, and treatment characteristics to the survival prognosis was evaluated by machine learning using the following techniques: logistic regression, artificial neural network, XGBoost, support-vector clustering, random forest, and Gaussian Naive Bayes. Results: In the analysis of the data set, correlation analysis, and binary logistic regression analyses were applied. Of the 18 independent variables, 10 were found to be effective in predicting nasopharyngeal cancer-related mortality: age, weight loss, initial neutrophil/lymphocyte ratio, initial lactate dehydrogenase, initial hemoglobin, radiotherapy duration, tumor diameter, number of concurrent chemotherapy cycles, and T and N stages. Gaussian Naive Bayes was determined as the best algorithm to evaluate the prognosis of machine learning techniques (accuracy rate: 88%, area under the curve score: 0.91, confidence interval: 0.68-1, sensitivity: 75%, specificity: 100%). Conclusion: Many factors affect prognosis in cancer, and machine learning algorithms can be used to determine which factors have a greater effect on survival prognosis, which then allows further research into these factors. In the current study, Gaussian Naive Bayes was identified as the best algorithm for the evaluation of prognosis of nasopharyngeal cancer.


JURTEKSI ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11-18
Author(s):  
Chika Enggar Puspita ◽  
Oktariani Nurul Pratiwi ◽  
Edi Sutoyo

Abstract: Question classification is a computer science system, which aims to analyze questions and can label each question based on existing categories. Questions can be collected from several materials or topics that are many and different. Therefore, the researcher intends to create a classification system for quiz questions Data Warehouse and Business Intelligence which can be grouped into topics Data Warehouse, Business Intelligence, Data Analytics, and Performance Measurement. One way to solve this problem is by approach machine learning. In this study, researchers used a comparison of machine learning algorithms, namely the algorithm NaïveBayes and SupportVectorMachine using SMOTE and methods Cross-Validation The results of this study show the best accuracy results and are very helpful. The results obtained in the method cross-validation before SMOTE resulted in an accuracy rate of 82.02% for the results after going through the SMOTE stage of 94.79% on the algorithm Naïve Bayes, while the algorithm SupportVectorMachine get accuracy of 81.39% in the process before SMOTE for the results after going through SMOTE of 96.52%.  Keywords: Cross-Validation; Machine Learning; Naive Bayes; Support Vector Machine; Question Classification  Abstrak: Klasifikasi pertanyaan merupakan sebuah sistem ilmu komputer, yang bertujuan untuk menganalisis pertanyaan serta dapat memberi label pada setiap pertanyaan berdasarkan kategori yang ada. Pertanyaan soal dapat dikumpulkan dari beberapa materi atau topik yang banyak dan berbeda. Oleh karena itu, bermaksud untuk membuat sistem klasifikasi pertanyaan soal kuis Data Warehouse dan Business Intelligence yang dapat dikelompokkan menjadi topik Data Warehouse, Business Intelligence, Data Analitik, dan Pengukuran Kinerja. Cara  yang dapat dilakukan untuk permasalahan ini dengan menggunakan pendekatan MachineLearning. Pada penelitian kali ini menggunakan perbandingan algoritma MachineLearning yaitu algoritma NaïveBayes dan SupportVectorMachine menggunakan metode SMOTE dan Cross-Validation. Hasil penelitian ini menunjukkan hasil akurasi yang terbaik dan sangat membantu. Hasil yang diperoleh pada metode cross-validation sebelum SMOTE menghasilkan tingkat akurasi sebesar 82.02% untuk hasil sesudah melalui tahap SMOTE sebesar 94.79 %  pada algoritma Naïve Bayes, sedangkan pada algoritma Support Vector Machine menghasilkan akurasi sebesar pada proses sebelum SMOTE 81.39% untuk hasil sesudah melalui SMOTE sebesar 96.52%. Kata kunci: Klasifikasi Pertanyaan; Pembelajaran Mesin; Naive Bayes; Support Vector Machine; Cross-Validation


Diabetes is a most common disease that occurs to most of the humans now a day. The predictions for this disease are proposed through machine learning techniques. Through this method the risk factors of this disease are identified and can be prevented from increasing. Early prediction in such disease can be controlled and save human’s life. For the early predictions of this disease we collect data set having 8 attributes diabetic of 200 patients. The patients’ sugar level in the body is tested by the features of patient’s glucose content in the body and according to the age. The main Machine learning algorithms are Support vector machine (SVM), naive bayes (NB), K nearest neighbor (KNN) and Decision Tree (DT). In the exiting the Naive Bayes the accuracy levels are 66% but in the Decision tree the accuracy levels are 70 to 71%. The accuracy levels of the patients are not proper in range. But in XG boost classifiers even after the Naïve Bayes 74 Percentage and in Decision tree the accuracy levels are 89 to 90%. In the proposed system the accuracy ranges are shown properly and this is only used mostly. A dataset of 729 patients can be stored in Mongo DB and in that 129 patients repots are taken for the prediction purpose and the remaining are used for training. The training datasets are used for the prediction purposes.


Author(s):  
Ahmed T. Shawky ◽  
Ismail M. Hagag

In today’s world using data mining and classification is considered to be one of the most important techniques, as today’s world is full of data that is generated by various sources. However, extracting useful knowledge out of this data is the real challenge, and this paper conquers this challenge by using machine learning algorithms to use data for classifiers to draw meaningful results. The aim of this research paper is to design a model to detect diabetes in patients with high accuracy. Therefore, this research paper using five different algorithms for different machine learning classification includes, Decision Tree, Support Vector Machine (SVM), Random Forest, Naive Bayes, and K- Nearest Neighbor (K-NN), the purpose of this approach is to predict diabetes at an early stage. Finally, we have compared the performance of these algorithms, concluding that K-NN algorithm is a better accuracy (81.16%), followed by the Naive Bayes algorithm (76.06%).


Sign in / Sign up

Export Citation Format

Share Document