scholarly journals Analysis of Vibration Reduction Effect of the Floating Slab Track with Different Base Forms in a Small Radius Curve of Subway Lines

Author(s):  
Rui Ma ◽  
Chuanzhi Geng
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 452
Author(s):  
Zeming Zhao ◽  
Kai Wei ◽  
Wenhao Ding ◽  
Fang Cheng ◽  
Ping Wang

The purpose of this research was to investigate and improve the accuracy of the existing slab-track mat (STM) specifications in the evaluation of the vibration reduction effect. The static nonlinearity and dynamic mechanical characteristics of three types of STMs were tested, and then a modified fractional derivative Poynting–Thomson (FDPT) model was used to characterize the preload and frequency dependence. A modified vehicle–floating slab track (FST) coupled dynamic model was established to analyze the actual insertion loss. The insertion loss error evaluated by the frequency-dependent tangent stiffness increased with the increase in STM nonlinearity, and the error obtained by the third preload tangent stiffness was usually greater than that of the second preload. Compared with the secant stiffness, the second preload frequency-dependent tangent stiffness was more suitable for evaluating STMs with high-static–low-dynamics (HSLD) stiffness. In order to reflect the frequency dependence effect and facilitate engineering applications, it is recommended that second preload tangent stiffness corresponding to the natural frequency of the FST be used for evaluation. Furthermore, the insertion loss of the STMs with monotonically increased stiffness decreased as the axle load increased, and the opposite was true for the STMs with monotonically decreased stiffness. The vibration isolation efficiency of the STMs with HSLD stiffness was both stable and better than that of the STMs with monotonic stiffness.


2018 ◽  
Vol 25 (6) ◽  
pp. 1148-1163 ◽  
Author(s):  
Minghang Li ◽  
Meng Ma ◽  
Weining Liu ◽  
Bolong Jiang

To effectively reduce the railway vibration and its environmental impact, vibration mitigation measures are increasingly used. The vibration reduction effect of railway tracks is described quantitatively by insertion loss (IL). ILs obtained from in situ measurements under moving train loads and laboratory tests under artificial excitation differ significantly due to the different track loading state between these two methods. The differences of track loading state are induced by the moving effect of train passages and the preloads effect of vehicle masses, the latter of which is a significant factor to discuss in this paper. In order to study the static preload by vehicle masses influence on the vibration reduction effect in isolated tracks, the steel spring floating slab track and regular slab track, as a reference case, were compared. First, a theoretical simplified model was constructed, following which a finite–infinite element coupled model was built, which was calibrated by experimental test results. Impact loads were applied to both tracks with preloads using unsprung wheelsets or sprung vehicle-body masses, with the total mass varying from 0 t to 30 t. The results demonstrate that the increase in preload of unsprung mass makes the natural frequencies further reduced, and the peak IL value increased from 39 dB to 48 dB. The increase in preload has a significant effect on vibration responses below 5 Hz, and the application of the preload has different effects on the reduction effect in different frequency ranges.


2021 ◽  
pp. 107754632110598
Author(s):  
Hao Jin ◽  
Hongying Wang ◽  
Zheng Li ◽  
Xin Zhou

With the continuous increase of subway operating mileage, the problem of subway vibration has become more and more significant. Nowadays, the point-supported floating-slab track is recognized as the best method to control track vibration, which is mainly designed based on the mass-spring-damping theory. How to further improve the vibration control ability of the point-supported floating-slab track? In this paper, a new type of rubber point-supported floating slab track is designed based on the local resonance theory. Through calculation and dynamic test, it is obtained as follows: (1) The band gap of the point support structure by local resonance type depends on the two vertical vibration modes. (2) As the elastic modulus of the cladding layer increases, the bandwidth of the band gap of the corresponding structure increases significantly. (3) The increase of the vibrator density can increase the bandwidth, while reducing the start and stop frequencies, which is beneficial to attenuate the resonance of the floating-slab track. (4) The cushion material parameters of point support structure by local resonance type 2 will not affect the band gap. The increase in sleeve density will reduce the band gap, which is not conducive to vibration reduction. Local resonance type floating-slab track will be the development direction of track vibration-reduction measures in the future.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaopei Cai ◽  
Dacheng Li ◽  
Yanrong Zhang ◽  
Qian Miao ◽  
Rixin Cui

The vibration effect of urban rail transit has gained attention from both academia and the industry sector. Long Elastic Sleeper Track (LEST) is a new structure for vibration reduction which has recently been designed and applied to Chinese subways. However, little research has been devoted to its vibration reduction effect. In this study, field tests were conducted during peak transit hours on Beijing Subway Line 15 to examine the vibration reduction effects of the common ballastless track and LEST on both straight and curved sections. The results demonstrate that although LEST increases the wheel-rail vertical forces, rail vertical displacements, and rail accelerations to some extent, these effects do not threaten subway operational safety, and vibrations of track bed and tunnel wall are positively mitigated. LEST has an obvious vibration reduction effect at frequencies above 40 Hz. In straight track, the vibration of bottom of the tunnel wall measured in one-third octave bands is reduced by 10.52 dB, while the vibration at point on the tunnel wall at 1.5 m height is reduced by 9.60 dB. For the curved track, the vibrations at those two points are reduced by 9.35 dB and 8.44 dB, respectively. This indicates that LEST reduces vibrations slightly more for the straight track than for the curved track.


2015 ◽  
Vol 752-753 ◽  
pp. 698-701
Author(s):  
Kyoung Woo Kim ◽  
Jun Oh Yeon ◽  
Kwan Seop Yang

Floating floor structures installed with resilient materials are commonly used to reduce sound from floor impacts. Resilient materials minimize the transmission of vibrations by absorbing shock vibrations occurring on the upper part. The floor impact sound reduction performance of resilient materials is related to the dynamic stiffness, which is a physical characteristic of materials. However, the dynamic stiffness varies according to the increase in the loading time of the load that is installed on the upper part of resilient materials. The dynamic stiffness values increase with an increase in the loading time; an increased dynamic stiffness value decreases the vibration reduction effect. The present study focuses on a floor structure installed with resilient materials, and identifies the degree of reduction in floor impact sound insulation performance with the elapse of time. The insulation of sound from lightweight impact sound decreased with the elapse of time, whereas the heavyweight impact sound did not show significant changes.


Sign in / Sign up

Export Citation Format

Share Document