scholarly journals Effect of Crosslinker Concentration on the Comprehensive Properties of Polyacrylamide-aluminium Citrate/Water Glass Gel

Author(s):  
Han Ren ◽  
Nannan Qu ◽  
Yunna Wang ◽  
Xiaoxuan Qiu ◽  
Qing Liu ◽  
...  
2019 ◽  
Vol 9 (23) ◽  
pp. 5258
Author(s):  
Fang Wang ◽  
Mian Wu ◽  
Genqi Tian ◽  
Zhe Jiang ◽  
Shun Zhang ◽  
...  

A flat cover of an adjustable ballast tank made of high-strength maraging steel used in deep-sea submersibles collapsed during the loading process of external pressure in the high-pressure chamber. The pressure was high, which was the trigger of the collapse, but still considerably below the design limit of the adjustable ballast tank. The failure may have been caused by material properties that may be defective, the possible stress concentration resulting from design/processing, or inappropriate installation method. The present paper focuses on the visual inspections of the material inhomogeneity, ultimate cause of the collapse of the flat cover in pressure testing, and finite element analysis. Special attention is paid to the toughness characteristics of the material. The present study demonstrates the importance of material selection for engineering components based on the comprehensive properties of the materials.


2021 ◽  
Vol 44 (4) ◽  
pp. 732-740
Author(s):  
Andres Carrasco Saavedra ◽  
Markus Seifert ◽  
Mariella Hannß ◽  
Thomas Henle ◽  
Mai Lê-Anh ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1407
Author(s):  
Tianyu Yao ◽  
Kui Wang ◽  
Haiyan Yang ◽  
Haiyan Jiang ◽  
Jie Wei ◽  
...  

A method of forming an Mg/Al intermetallic compound coating enriched with Mg17Al12 and Mg2Al3 was developed by heat treatment of electrodeposition Al coatings on Mg alloy at 350 °C. The composition of the Mg/Al intermetallic compounds could be tuned by changing the thickness of the Zn immersion layer. The morphology and composition of the Mg/Al intermetallic compound coatings were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscattered diffraction (EBSD). Nanomechanical properties were investigated via nano-hardness (nHV) and the elastic modulus (EIT), and the corrosion behavior was studied through hydrogen evolution and potentiodynamic (PD) polarization. The compact and uniform Al coating was electrodeposited on the Zn-immersed AZ91D substrate. After heat treatment, Mg2Al3 and Mg17Al12 phases formed, and as the thickness of the Zn layer increased from 0.2 to 1.8 μm, the ratio of Mg2Al3 and Mg17Al12 varied from 1:1 to 4:1. The nano-hardness increased to 2.4 ± 0.5 GPa and further improved to 3.5 ± 0.1 GPa. The Mg/Al intermetallic compound coating exhibited excellent corrosion resistance and had a prominent effect on the protection of the Mg alloy matrix. The control over the ratio of intermetallic compounds by varying the thickness of the Zn immersion layer can be an effective approach to achieve the optimal comprehensive performance. As the Zn immersion time was 4 min, the obtained intermetallic compounds had relatively excellent comprehensive properties.


2012 ◽  
Vol 217-219 ◽  
pp. 483-486
Author(s):  
Mei Yuan Ke

Effects of Sintering atmosphere and temperature on properties of warm compacted 410L stainless steel powder were studied. Sintered density, hardness, tensile strength and elongation were measured. Results showed that in order to achieve high comprehensive properties, the optimal sintering temperature was 1230°C for 410L stainless steel powder. At the same sintering temperature, density and hardness sintered in vacuum were much higher than that sintered in cracked ammonia while tensile strength sintered in cracked ammonia were much higher than that in vacuum. When sintered in vacuum at 1230°C, sintered density was 7.45 g•cm-3, hardness was 65 HRB, tensile strength was 410 MPa and elongation was 29.5%. When sintered in cracked ammonia atmosphere at 1230°C, sintered density was 7.26 g•cm-3, hardness was 97 HRB, tensile strength was 515 MPa and elongation was 3.8%.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1249
Author(s):  
Maofu Zhang ◽  
Yanfei Han ◽  
Chuanbao Jia ◽  
Shengfa Dong ◽  
Sergii Maksimov ◽  
...  

In underwater wet welding, the unstable welding process caused by the generation and rupture of bubbles and the chilling effect of water on the welding area result in low quality of welded joints, which makes it difficult to meet the practical application of marine engineering. To improve the process stability and joining quality, a mixture of welding flux with a water glass or epoxy resin was placed on the welding zone before underwater welding. In this paper, welds’ appearance, geometry statistics of welds’ formation, welding process stability, slag structure, microstructure, pores and mechanical properties were investigated. It was found that with the addition of water glass in the mixture, the penetration of weld was effectively increased, and the frequency of arc extinction was reduced. Though the porosity rose to a relatively high level, the joints’ comprehensive mechanical properties were not significantly improved. Notably, the applied epoxy resin completely isolated the surrounding water from the welding area, which greatly improved process stability. Furthermore, it benefited from the microstructure filled with massive acicular ferrite, the average elongation and room temperature impact toughness increased by 178.4%, and 69.1% compared with underwater wet welding, respectively, and the bending angle of the joint reaches to 180°.


Sign in / Sign up

Export Citation Format

Share Document