scholarly journals Correction Calculation of Influence of Back Pressure Change of Extraction Steam Condensing Unit on Unit Power

Author(s):  
Yanpeng Zhang ◽  
Wei Zheng ◽  
Susheng Li ◽  
Lingkai Zhu ◽  
Si Li ◽  
...  
2000 ◽  
Vol 39 (02) ◽  
pp. 200-203
Author(s):  
H. Mizuta ◽  
K. Yana

Abstract:This paper proposes a method for decomposing heart rate fluctuations into background, respiratory and blood pressure oriented fluctuations. A signal cancellation scheme using the adaptive RLS algorithm has been introduced for canceling respiration and blood pressure oriented changes in the heart rate fluctuations. The computer simulation confirmed the validity of the proposed method. Then, heart rate fluctuations, instantaneous lung volume and blood pressure changes are simultaneously recorded from eight normal subjects aged 20-24 years. It was shown that after signal decomposition, the power spectrum of the heart rate showed a consistent monotonic 1/fa type pattern. The proposed method enables a clear interpretation of heart rate spectrum removing uncertain large individual variations due to the respiration and blood pressure change.


2014 ◽  
Vol 2 ◽  
pp. 78-81
Author(s):  
Nobuaki Aoki ◽  
Noriyoshi Manabe ◽  
Tadafumi Adschiri
Keyword(s):  

Author(s):  
Jaya Pratha Sebastiyar ◽  
Martin Sahayaraj Joseph

Distributed joint congestion control and routing optimization has received a significant amount of attention recently. To date, however, most of the existing schemes follow a key idea called the back-pressure algorithm. Despite having many salient features, the first-order sub gradient nature of the back-pressure based schemes results in slow convergence and poor delay performance. To overcome these limitations, the present study was made as first attempt at developing a second-order joint congestion control and routing optimization framework that offers utility-optimality, queue-stability, fast convergence, and low delay.  Contributions in this project are three-fold. The present study propose a new second-order joint congestion control and routing framework based on a primal-dual interior-point approach and established utility-optimality and queue-stability of the proposed second-order method. The results of present study showed that how to implement the proposed second-order method in a distributed fashion.


2020 ◽  
Vol 26 (3) ◽  
pp. 126-130
Author(s):  
Krasimir Kalev

AbstractA schematic diagram of a hydraulic drive system is provided to stabilize the speed of the working body by compensating for volumetric losses in the hydraulic motor. The diagram shows the inclusion of an originally developed self-adjusting choke whose flow rate in the inlet pressure change range tends to reverse - with increasing pressure the flow through it decreases. Dependent on the hydraulic characteristics of the hydraulic motor and the specific operating conditions.


2019 ◽  
pp. 81-85
Author(s):  
Se Hyun Oh ◽  
◽  
Hui Dong Kang ◽  
Sang Ku Jung ◽  
Sangchun Choi ◽  
...  

Decompression sickness is a disease caused by abrupt pressure change and presents various symptoms. To date, acute kidney injury associated with decompression sickness has been reported frequently, but there is no report of hepatic infarction associated with decompression sickness. We report a case of acute kidney injury and acute hepatic infarction treated with hyperbaric oxygen (HBO2) therapy and dialysis in a patient with severe decompression sickness after work diving.


2021 ◽  
Vol 13 (13) ◽  
pp. 7047
Author(s):  
Nu Yu ◽  
Yao Zhang ◽  
Mengya Zhang ◽  
Haifeng Li

Cabin air quality and thermal conditions have a direct impact on passenger and flight crew’s health and comfort. In this study, in-cabin thermal environment and particulate matter (PM) exposures were investigated in four China domestic flights. The mean and standard deviation of the in-cabin carbon dioxide (CO2) concentrations in two tested flights are 1440 ± 111 ppm. The measured maximum in-cabin carbon monoxide (CO) concentration is 1.2 ppm, which is under the US Occupational Safety and Health Administration (OSHA) permissible exposure limit of 10 ppm. The tested relative humidity ranges from 13.8% to 67.0% with an average of 31.7%. The cabin pressure change rates at the end of the climbing stages and the beginning of the descending stages are close to 10 hPa·min−1, which might induce the uncomfortable feeling of passengers and crew members. PM mass concentrations were measured on four flights. The results show that PM concentrations decreased after the aircraft cabin door closed and were affected by severe turbulences. The highest in-cabin PM concentrations were observed in the oldest aircraft with an age of 13.2 years, and the waiting phase in this aircraft generated the highest exposures.


Sign in / Sign up

Export Citation Format

Share Document