scholarly journals Green Economy and Meat Processing–Future Prospects

2021 ◽  
Vol 854 (1) ◽  
pp. 012074
Author(s):  
Z Petrovic ◽  
D Milicevic ◽  
D Vranic ◽  
S Rajic ◽  
S Simunovic

Abstract This paper provides a brief overview of the possible strategies for reducing hydrocarbon emissions from the meat industry according to the Green Deal program of the EU in the next decades. An overview of emerging technologies (high-pressure processing (HPP), shock wave technology (SW), ohmic heating (OH) and pulsed electric field (PEF), cultured meat) that should reduce gas emissions is given, as well as methodologies that can be applied (labelling, sustainable cooking, product lifecycle management (PLM) and product data management (PDM) applications). Noticeably, most novel strategies draw the conclusion that we should go for lower consumption of meat, especially beef, and change habits to eat and prepare foods in energy and environmentally friendly ways, as well as apply the so-called “green” food declaration in the future. Transforming into a climate-friendly economy, protecting biodiversity, and reorienting the agri-food industry growth can contribute to creating greater resilience of society.

2021 ◽  
Vol 13 (1) ◽  
pp. 413
Author(s):  
Maximilian Kardung ◽  
Kutay Cingiz ◽  
Ortwin Costenoble ◽  
Roel Delahaye ◽  
Wim Heijman ◽  
...  

The EU’s 2018 Bioeconomy Strategy Update and the European Green Deal recently confirmed that the bioeconomy is high on the political agenda in Europe. Here, we propose a conceptual analysis framework for quantifying and analyzing the development of the EU bioeconomy. The bioeconomy has several related concepts (e.g., bio-based economy, green economy, and circular economy) and there are clear synergies between these concepts, especially between the bioeconomy and circular economy concepts. Analyzing the driving factors provides important information for monitoring activities. We first derive the scope of the bioeconomy framework in terms of bioeconomy sectors and products to be involved, the needed geographical coverage and resolution, and time period. Furthermore, we outline a set of indicators linked to the objectives of the EU’s bioeconomy strategy. In our framework, measuring developments will, in particular, focus on the bio-based sectors within the bioeconomy as biomass and food production is already monitored. The selected indicators commit to the EU Bioeconomy Strategy objectives and conform with findings from previous studies and stakeholder consultation. Additionally, several new indicators have been suggested and they are related to measuring the impact of changes in supply, demand drivers, resource availability, and policies on sustainability goals.


Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 84
Author(s):  
Andreas Deuter ◽  
Sebastian Imort

Product lifecycle management (PLM) as a holistic process encompasses the idea generation for a product, its conception, and its production, as well as its operating phase. Numerous tools and data models are used throughout this process. In recent years, industry and academia have developed integration concepts to realize efficient PLM across all domains and phases. However, the solutions available in practice need specific interfaces and tend to be vendor dependent. The Asset Administration Shell (AAS) aims to be a standardized digital representation of an asset (e.g., a product). In accordance with its objective, it has the potential to integrate all data generated during the PLM process into one data model and to provide a universally valid interface for all PLM phases. However, to date, there is no holistic concept that demonstrates this potential. The goal of this research work is to develop and validate such an AAS-based concept. This article demonstrates the application of the AAS in an order-controlled production process, including the semi-automatic generation of PLM-related AAS data. Furthermore, it discusses the potential of the AAS as a standard interface providing a smooth data integration throughout the PLM process.


2021 ◽  
Vol 1 ◽  
pp. 1887-1896
Author(s):  
Vahid Salehi

AbstractCurrently, inconsistent software versions lead to massive challenges for many car manufacturers. This is partly because within the product lifecycle management and the software engineering process, there is no correct handling of software versions for the “data entry” (installation of software on the ECU) of the vehicles. Furthermore, there are currently major challenges for many vehicle manufacturers to ensure transparency, integrity and full traceability of SW data status vis-à-vis the legislator. To counteract these challenges, new solutions in the field of vehicle engineering are to be developed based on a new platform called “CarEngChainNet” and Blockchain technology. On the basis of the “CarEngChainNet” platform, new main and sub-chain chains will be developed that allow tamper-proof SW data management (Peer to Peer and crypto technology) across the entire PLM chain with new methods such as model-based systems engineering of the requirement, function and integration of the SW components in different areas of vehicle development. The aim is to develop new transmission chains of vehicles with individually packaged software artefacts (e.g. ECU software) that can be securely transmitted from server to server into the vehicle.


2021 ◽  
Vol 11 (13) ◽  
pp. 5975
Author(s):  
Ana María Camacho ◽  
Eva María Rubio

The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 14 contributions published in this Special Issue of Applied Sciences present cutting-edge advances in the field of Manufacturing Engineering focusing on advances and innovations in manufacturing processes; additive manufacturing and 3D printing; manufacturing of new materials; Product Lifecycle Management (PLM) technologies; robotics, mechatronics and manufacturing automation; Industry 4.0; design, modeling and simulation in manufacturing engineering; manufacturing engineering and society; and production planning. Among them, the topic “Manufacturing engineering and society” collected the highest number of contributions (representing 22%), followed by the topics “Product Lifecycle Management (PLM) technologies”, “Industry 4.0”, and “Design, modeling and simulation in manufacturing engineering” (each at 14%). The rest of the topics represent the remaining 35% of the contributions.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1436
Author(s):  
Siobhán McSharry ◽  
Leonard Koolman ◽  
Paul Whyte ◽  
Declan Bolton

Spore-forming bacteria are a major concern for the food industry as they cause both spoilage and food safety issues. Moreover, as they are more resistant than vegetative cells, their removal from the food processing environment may be difficult to achieve. This study investigated the efficacy of the ten most commonly used disinfectant agents (assigned 1–10), used at the recommended concentrations in the meat industry, for their ability to eliminate Clostridium sporogenes and Clostridioides difficile spores. Test-tube based suspension assays suggested that disinfectants 2 (10% v/v preparation of a mixture of hydrogen peroxide (10–30%), acetic acid (1–10%) and peracetic acid (1–10%)), 7 (4% w/v preparation of a mixture of peroxymonosulphate (30–50%), sulphamic acid (1–10%) and troclosene sodium (1–10%)) and 10 (2% v/v preparation of a mixture of glutaraldehyde (10–30%), benzalkonium chloride (1–10%)) were the most effective formulations. D-values for these ranged from 2.1 to 8.4 min at 20 °C for the target spores. Based on these findings, it is recommended that these disinfectants are used to control Clostridium spores in the meat plant environment.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Haibo Shi ◽  
Fereidoon Shahidi ◽  
Jiankang Wang ◽  
Yan Huang ◽  
Ye Zou ◽  
...  

Abstract Developing efficient and promising tenderising techniques for postmortem meat is a heavily researched topic among meat scientists as consumers are willing to pay more for guaranteed tender meat. However, emerging tenderising techniques are not broadly used in the meat industry and, to some degree, are controversial due to lack of theoretical support. Thus, understanding the mechanisms involved in postmortem tenderisation is essential. This article first provides an overview of the relationship of ageing tenderisation and calpain system, as well as proteomics applied to identify protein biomarkers characterizing tenderness. In general, the ageing tenderisation is mediated by multiple biochemical activities, and it can exhibit better palatability and commercial benefit by combining other interventions. The calpain system plays a key role in ageing tenderisation functions by rupturing myofibrils and regulating proteolysis, glycolysis, apoptosis and metabolic modification. Additionally, tenderising techniques from different aspects including exogenous enzymes, chemistry, physics and the combined methods are discussed in depth. Particularly, innovation of home cooking could be recommended to prepare relatively tender meat due to its convenience and ease of operation by consumers. Furthermore, the combined interventions provide better performance in controlled tenderness. Finally, future trends in developing new tenderising techniques, and applied consideration in the meat processing industry are proposed in order to improve meat quality with higher economical value. Graphical abstract


Author(s):  
Shinichi Fukushige ◽  
Yuki Matsuyama ◽  
Eisuke Kunii ◽  
Yasushi Umeda

Within the framework of sustainability in manufacturing industry, product lifecycle design is a key approach for constructing resource circulation systems of industrial products that drastically reduce environmental loads, resource consumption and waste generation. In such design, designers should consider both a product and its lifecycle from a holistic viewpoint, because the product’s structure, geometry, and other attributes are closely coupled with the characteristics of the lifecycle. Although product lifecycle management (PLM) systems integrate product data during its lifecycle into one data architecture, they do not focus on support for lifecycle design process. In other words, PLM does not provide explicit models for designing product lifecycles. This paper proposes an integrated model of a product and its lifecycle and a method for managing consistency between the two. For the consistency management, three levels of consistency (i.e., topological, geometric, and semantic) are defined. Based on this management scheme, the product lifecycle model allows designers to evaluate environmental, economic, and other performance of the designed lifecycle using lifecycle simulation.


Sign in / Sign up

Export Citation Format

Share Document