scholarly journals Characteristic of the 2010-2020 Earthquakes in North Arm of Sulawesi based on Focal Mechanism and b-value

2021 ◽  
Vol 873 (1) ◽  
pp. 012031
Author(s):  
A P Astuti ◽  
E M Elsera ◽  
M F I Massinai ◽  
M A Akbar

Abstract The north arm of Sulawesi has a fairly high level of seismicity. The North Sulawesi arm is bounded in the south by the Palu-Koro Fault, the northern part is bounded by the North Sulawesi Trench and the Molluca Sea Thrust in the east. Therefore, this study aims to analyze the characteristic of the 2010-2020 earthquakes in the north arm of Sulawesi by analyzing the earthquake’s focal mechanism and mapping the b-value using the maximum likelihood method. From this study, we obtained the focal mechanism consist of thrust and strike-slip, this is due to the activity of faults and subduction zones in the North arm of Sulawesi such as the Palu-koro fault, the Gorontalo Fault, North Sulawesi Trench, Molucca Sea Collision, and several other faults that affect the seismicity of this region. The variation of the b-value ranging from 0.5-1.1 These studies indicate that thrust fault regions have lower b-values, while strike-slip fault regions have intermediate b-values. Meanwhile, areas with active volcanoes tend to have high b-values. The results of this research can be used as a basis for decision making related to earthquake mitigation in this area in the future.

2021 ◽  
Vol 54 (1D) ◽  
pp. 1-10
Author(s):  
Emad Al-Heety

The earthquake size distribution (b-value) is a significant factor to recognize the seismic activity, seismotectonic, and seismic hazard assessment. In the current work, the connection of the b-constant value with the focal depth and mechanism was studied. The effect of the study scale (global, regional and local) on the dependence of b-value on the focal mechanisms was investigated. The database is quoted from the Global Centroid Moment Tensor catalog. The selected earthquakes are the shallow normal, reverse and strike-slip events. The completeness magnitude (Mc) is 5.3. The maximum likelihood method is utilized to compute the b-value. The obtained results show that the b-value is decreasing with depth to range 10-20 km, then increases to the depth of 40km. The turning point of b-value (increasing of b-value) locates at the depth of the transition brittle-ductile zone. Globally and regionally, low, moderate, and high b-values are associated with reverse, strike-slip, and normal focal mechanisms, respectively, while locally, the relation between b-values and focal mechanisms shows different association trends, such as low, moderate, and high b-values are associated with normal, strike-slip, and reverse focal mechanisms and so on.


2021 ◽  
Author(s):  
Keita Chiba

Abstract The spatiotemporal stress states in the aftershock region of the 2005 west off Fukuoka prefecture earthquake are examined via an analysis of the b -values and focal mechanism solutions. The aftershocks are aligned roughly NW–SE, with the southeastern part of the aftershock region believed to correspond to Kego Fault, which extends beneath the Fukuoka metropolitan area. This study reveals depth-dependent b -values in the focal region, where the b -values ( b = 0.7–1.4) are generally higher above the mainshock depth (9.5 km) and lower ( b = 0.5–1.0) at greater depths. The shallower region possesses a significant temporal increase in b -values, whereas a lateral b -value heterogeneity is observed in the deeper region. The b -values ( b ~ 1.0) near the mainshock are relatively high, whereas the northwestern and southeastern edges of the deep region have lower b -values ( b = 0.5–0.7). On the other hand, many of the focal mechanisms for the M ≥ 3.5 events are located in the low b -value area of the deep region. The stress-tensor inversion results reveal a change in stress state from strike-slip to strike-slip/normal faulting . These findings imply that the stress state remains high and/or slightly decreased in the northwestern and southeastern parts of the deep region. These results and the findings of previous research on this earthquake sequence suggest that the likelihood of future large earthquakes along the southeastern part of the aftershock region should be considered relatively high.


1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


2017 ◽  
Vol 1 (1) ◽  
pp. 34-40
Author(s):  
Arum Handini Primandari ◽  
Khusnul Khotimah

An earthquake is one of catastrophe which often claim numerous lives and cause great damage to infrastructure. Multiple studies from various field have been conducted in order to make a precise prediction of earthquake occurrence, such as recognizing the natural phenomena symptoms leading to the shaking and ground rupture. However, up till now there is no definite method that can predict the time and place in which earthquake will occur. By assuming that the number of earthquake follow Gutenberg-Richter law, we work b-value derived using Maximum Likelihood Method to calculate the probability of earthquake happen in the next few years. The southern sea of D.I. Yogyakarta was divided into four areas to simplify the analysis. As the result, in the next five years the first and second area have high enough probability (>0.3) to undergo more than 6.0-magnitude earthquake.


1979 ◽  
Vol 69 (2) ◽  
pp. 427-444
Author(s):  
C. J. Langer ◽  
G. A. Bollinger

abstract Aftershocks of the February 4, 1976 Guatemalan earthquake (Ms = 7.5) were monitored by a network of portable seismographs from February 9 to February 27. Although seismic data were obtained all along the 230-km surface rupture of the causal Motagua fault, the field program was designed to concentrate on the aftershock activity at the western terminus of the fault. Data from that locale revealed several linear or near-linear trends of aftershock epicenters that splay to the southwest away from the western end of the main fault. These trends correlate spatially with mapped surface lineaments and, to some degree, with ground breakage patterns near Guatemala City. The observed splay pattern of aftershocks and the normal-faulting mode of the splay earthquakes determined from composite focal mechanism solutions, may be explained by a theoretical pattern of stress trajectories at the terminus of a strike-slip fault. Composite focal mechanism solutions for aftershocks located on or near the surface break of the Motagua fault, to the north and east of the linear trend splay area, agree with the mapped surface movements, i.e., left-lateral strike-slip.


1994 ◽  
Vol 84 (4) ◽  
pp. 1058-1074 ◽  
Author(s):  
Egill Hauksson

Abstract The (ML 5.8) Sierra Madre earthquake of 28 June 1991 occurred at a depth of 12 km under the San Gabriel Mountains of the central Transverse Ranges. Since at least 1932 this region had been quiescent for M ≧ 3. The mainshock focal mechanism derived from first-motion polarities exhibited almost pure thrust faulting, with a rake of 82° on a plane striking N62°E and dipping 50° to the north. The event appears to have occurred on the Clamshell-Sawpit fault, a splay of the Sierra Madre fault zone. The aftershock sequence following the mainshock occurred at a depth of 9 to 14 km and was deficient in small earthquakes, having a b value of 0.6. Twenty nine single-event focal mechanisms were determined for aftershocks of M > 1.5. The 4-km-long segment of the Clamshell-Sawpit fault that may have ruptured in the mainshock is outlined by several thrust focal mechanisms with an east-northeast-striking fault plane dipping to the north. To the west, several thrust aftershocks with east-striking nodal planes suggest some complexity in the aftershock faulting, such as a curved rupture surface. In addition, several strike-slip and normal faulting events occurred along the edges of the mainshock fault plane, indicating secondary tear faulting. The tectonic stress field driving the coexisting left-lateral strike-slip and thrust faults in the northern Los Angeles basin is north-south horizontal compression with vertical intermediate or minimum principal stress axis.


2021 ◽  
Vol 944 (1) ◽  
pp. 012028
Author(s):  
N O Yonatika ◽  
N Widiasih ◽  
M Hamidah ◽  
M D Nurhakim ◽  
H Budiarto ◽  
...  

Abstract Phyllidiella pustulosa are brightly coloured gastropod molluscs frequently found in coral reefs of the tropical Indo-Pacific. Phyllidiella pustulosa is widely distributed in Indonesia, such as Seribu Island, North Sulawesi, West Papua, and Halmahera. Based on the genetic characteristics of an individual’s DNA sequence, differences between species can be identified. In this paper, we would like to provide the molecular analysis and phylogenetic relationship among nudibranchs from Indonesian waters. Identification was made by measuring the genetic distance between species. The phylogenetic tree reconstruction was made using the Kimura 2-parameter model with 1000 times bootstrap with neighbor-joining and maximum likelihood method. There is 46 DNA Sequence obtained from 4 different regions (Seribu Island, Halmahera, North Sulawesi, and West Papua). The genetic distance of West Papua and Halmahera has the smallest value among other populations, which is between 0.0051-1.4629, compared to the population in Halmahera. The phylogenetic tree also shows populations from West Papua and Halmahera are on the same lineage, indicating that the population in West Papua and Halmahera had the closest relation. The study suggested that North Sulawesi, Halmahera and West Papua have genetic mixing of the same region, which is distinctive from Seribu Island.


2003 ◽  
Vol 174 (3) ◽  
pp. 305-317 ◽  
Author(s):  
Thierry Beaudouin ◽  
Oliver Bellier ◽  
Michel Sebrier

Abstract Sulawesi Island, eastern Indonesia, is located at the junction between the Pacific-Philippine, Indo-Australian Plates, and the Sunda Block, i.e., the southeastern edge of the Eurasian Plate (fig. 1). Its peculiar shape results from an on-going complex history of collision and rotation of continental slivers, island arcs, and oceanic domains with respect to the Sunda Block. Seismic network document a high level of seismicity in its northern boundaries, corresponding to deformation along the North Sulawesi trench and within the Molucca Sea subduction (fig. 1). Seismic activity is lower in central and south Sulawesi (fig. 4). It represents the activity of the NE, SW and SE arms thrust and the left-lateral Central Sulawesi Fault System, which comprises the Palu-Koro and Matano fault zones. This system connects, from northwest to southeast, the North Sulawesi Subduction zone to the Sorong fault (through th Sud Sula fault, after, Hinschberger et al. [2000] and the Tolo thrust in the North Banda Sea, Silver et al., [1983] proposed a deformation model that implies a clockwise rotation of the Sula block that is limited to the west and south by the Central Sulawesi Fault System. Paleomagnetic [Surmont et al., 1994] and GPS [Walpersdorf et al., 1998a] studies confirm and measure this rotation. In order to discus the present day kinematics and deformation of Sulawesi area, we performed a seismotectonic study, using focal mechanism of moderate and large (Mw ≥ 5) shallow earthquake (≤ 60 Km), collected from the Harverd CMT database (period 1976 to 2001) and complemented by Fitch [1972] and Cardwell [1980] (period 1964–1976). From these focal mechanisms and the known structural context, we defined ten homogeneous deformation domains (fig. 3 et fig.5). For seven of these, focal solution and moment tensors were inverted (Carey-Gailhardis and Mercier method [1987Carey-Gailhardis and Mercier method [1992]) and summed, in order to obtain stress and deformation tensors and rate estimates (Brune [1968] or Kostrov [1974] methods). Results are presented in table I, on figure 2 and figure 3. In northern Molucca Sea (north of equvator), the fast convergence slip rate (75 mm/a) is absorbed by the Sangihe subduction and accommodates the major part of the Philippines/Sunda plates motion. South of the equator, the estimated slip rate is only 2 mm/yr and represents the Sangihe slap subduction, which is affected by a torsion from NNE to E strike. Along the North-Sulawesi fault system, direction of the stress axes are not significantly different from east to west (average N356°±5E), but the determined slip rates increase from 20±4 mm/a to 54±10 mm/a, respectively. These values agree with the Sula block rotation pole previously proposed and located at the eastern extremity of the Northern Arm. The Palu-Koro fault, bounding the western Sula block, contributes to this rotaion because its trace fits well a small circle centered on the pole. However, seisicity document few moderate magnitude earthquake (fig. 4) related to the left lateral Central Sulawesi fault system, despite many identified active tectonic feature [Beaudouin, 1998]. Moreover, geologically determined Palu-Koro long-term slip rate of 35±8 mm/a, [Bellier et al., 2001] agrees with the far-field strike-slip rate of 32–45 mm/a proposed from GPS measurement [Walpersdorf et al., 1998b ; Stevens et al., 1999]. This confirms that is a fast slipping fault with a relatively low level of seismicity. The southeastern limit of the Sula block is represented by the ENE-trending Sorong strike-slip fault that extends from Irian-Jaya island to the east coast of Sulawesi where it connects to the Matano fault through the South Sula fault, This structure is particularly active south of the Sula island with a major Mw=7.7 earthquake (29/11/98). The inversion provides a strike-slip regime with respectively N220°E and N310°E-trending σ1. and σ3 stress axes. This study also highlight the Sula block internal deformation that could explain in the GPS velocities model obtained by walpersdorf et al. [1998a] for the Sula block rotation. We evidence an extensional stress regime with a N030°E-trending σ3, in the southern part of the Tomini Gulf. The estimated extension rate is 9 mm/a toward a N036°E direction. Considering the location of the Tomini Gulf, this deformation could be interpreted as a back-arc spreading related to the North Sulawesi subduction. The Batui zone correspond to the domain of the collision wich occured in the early-middle Plicene [e.g., Velleneuve et al., 2000] between the NE arm and the Irian-jaya derived Banggaï-Sula block. This domain remains active (12 earthquake with a major one of Mw=7.6, 14/05/00, fig. 4) but is mainly affected by strike-slip deformation. The Tolo thrust, lying off the SE arm east coast, absorbs the convergence to the west of the North Banda Sea, as attested by six moderate earthquake with reverse faulting focal mechanisms. This allows to distinguish a North-Banda block in SE Sulawesi, bounded by the South Sula segment of the Sorong fault, the Tolo thrust and the Hamilton fault (fig. 5) and moving westward at a lower rate than the Sula block. The SW arm of Sulawesi is also characterised by a compressional stress regime with N099°E-trending σ1 and an estimated convergence rate of 8.5 mm/a toward a N080°E direction. This is the consequence of the Majene-Kalosi thrust activity and could represent the most western accommodation of the Philippines/Sunda plates motion.


2015 ◽  
Vol 17 (1) ◽  
pp. 94
Author(s):  
Vienda Gaby Lumintang ◽  
Guntur Pasau ◽  
Seni J Tongkukut

ANALISIS TINGKAT SEISMISITAS DAN TINGKAT KERAPUHAN BATUAN DI MALUKU UTARA ABSTRAK Telah dilakukan penelitian untuk menentukan tingkat seismisitas dan tingkat kerapuhan batuan melalui perhitungan nilai a dan b secara spasial di Maluku Utara menggunakan katalog gempa ANSS tahun 1963-2015 dengan metode maksimum likelihood, menghitung kemungkinan waktu terjadinya kembali gempa bumi merusak secara spasial, serta untuk menenentukan daerah-daerah yang sangat rawan berpotensi gempa merusak di wilayah Maluku Utara. Perhitungan nilai a dan b dari data ANSS untuk wilayah Maluku Utara menunjukkan besar nilai b adalah berkisar pada 0,75-1,5 dan nilai a adalah berkisar pada 6,5-10. Periode ulang gempa bumi untuk wilayah Maluku Utara dengan magnitude Mw = 6,5 adalah 3-19 tahun, gempa dengan magnitude Mw = 7 adalah 5-52 tahun, dan gempa dengan magnitude Mw = 7,5 adalah 15-140 tahun. Daerah-daerah yang berpotensi mengalami gempa bumi merusak adalah wilayah Laut Maluku, Ternate, Tidore, sebagian wilayah Kabupaten Halmahera Utara dan Barat, Pulau Kasiruta dan Pulau Obi. Kata kunci: nilai-b, seismisitas, maximum likelihood   ANALYSIS OF SEISMICITY LEVEL AND ROCKS FRAGILITY LEVEL IN NORTH MALUKU ABSTRACT A research has ben conducted to determine the seismicity level and rocks fragility level through spatially calculation of a  value and b value in North Maluku using ANSS earthquake catalog of years 1963-2015 with maximum likelihood method, spatially calculate possible time of  destructive earthquake recurrence, and to determine areas that highly prone to potentially destructive earthquake in North Maluku. A value and b value calculation of ANSS data of North Maluku region shows that b value is in the range of 0.75-1.5 and a value is in the range of 6.5-10. Earthquake repetition period of North Maluku region based on ANSS data with magnitude Mw = 6.5 is 3-19 years, for earthquake with magnitude Mw = 7 is 5-52 years and for earthquake with magnitude Mw = 7.5 is 15-140 years. Areas that potentially have destructive earthquake is Molucca Sea region, Ternate, Tidore, parts of North and West Halmahera District, Kasiruta Island and Obi Island. Keywords: b value, seismicity, maximum likelihood


2020 ◽  
Author(s):  
Marc Regnier ◽  
Gabriela Ponce ◽  
Marianne Saillard ◽  
Laurence Audin ◽  
Sandro Vaca ◽  
...  

<p>Along the Ecuadorian margin, the North Andean Sliver is moving in the northeastward direction due to the oblique subduction of the Nazca plate. The opening of the gulf of Guayaquil is a consequence of this motion. Two principal models compete to explain the opening. One proposes an opening achieved essentially with strike-slip motion along a single major fault through the gulf, the other with a combination of strike-slip and normal faulting on both sides of the gulf. The consequences in term of seismic hazard are very different. A single strike-slip fault model could imply a long fault segment capable of generating large magnitude events. In contrast, a multi-segments composite fault system will give conditions for producing small to medium size earthquakes. The southern Ecuador subduction zone is characterized by the absence of large historical earthquake. Data from the historical and instrumental seismicity for magnitude above 4 show the forearc has a high level of moderate seismic activity within and around the gulf that connects to the crustal seismic activity of the volcanic arc. In contrast, the forearc elsewhere shows very little or no seismic activity between the marine forearc zone and the volcanic arc. Regional and global CMTS data show a large number of mechanisms within the gulf that do not line up on a simple straight fault system. We present new earthquake data from the recently upgraded national seismic network of Ecuador. They provide the first image of SW-NE trending crustal faults stretching in the central part of the gulf and running eastward south of the Puna island. The main seismic belt appears to be discontinuous, made of short length segments with variable trends. The variety of focal solutions also indicates complex faulting. As the shape of this seismic belt is in good agreement with the orientation of the GPS velocity vectors, this new fault zone is readily interpreted as the southernmost segment of the actual NAS boundary. Others seismic clusters are observed parallel to the northern coast of the gulf, indicating active structures eventually accommodating the North-South opening of the gulf through normal faulting. b-value analysis of the main seismic belt seismicity shows high b value (>1) indicating either highly fractured or heterogeneous medium, or/and low stress level within the gulf of Guayaquil. This is again in agreement with a multi-segmented faulting system and also with the lack of large magnitude event in the historical seismic data. A cross-section for the entire seismic belt shows a depth extend of the crustal seismic activity down to 30 km which confirms the seismic belt to be a sliver boundary.</p>


Sign in / Sign up

Export Citation Format

Share Document